These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
294 related articles for article (PubMed ID: 25162317)
1. Arbuscular mycorrhiza-induced shifts in foliar metabolism and photosynthesis mirror the developmental stage of the symbiosis and are only partly driven by improved phosphate uptake. Schweiger R; Baier MC; Müller C Mol Plant Microbe Interact; 2014 Dec; 27(12):1403-12. PubMed ID: 25162317 [TBL] [Abstract][Full Text] [Related]
2. Growth, respiration and nutrient acquisition by the arbuscular mycorrhizal fungus Glomus mosseae and its host plant Plantago lanceolata in cooled soil. Karasawa T; Hodge A; Fitter AH Plant Cell Environ; 2012 Apr; 35(4):819-28. PubMed ID: 22070553 [TBL] [Abstract][Full Text] [Related]
3. Arbuscular Mycorrhizal Symbiosis with Arundo donax Decreases Root Respiration and Increases Both Photosynthesis and Plant Biomass Accumulation. Romero-Munar A; Del-Saz NF; Ribas-Carbó M; Flexas J; Baraza E; Florez-Sarasa I; Fernie AR; Gulías J Plant Cell Environ; 2017 Jul; 40(7):1115-1126. PubMed ID: 28060998 [TBL] [Abstract][Full Text] [Related]
4. Effects of Arbuscular Mycorrhiza on Plant Chemistry and the Development and Behavior of a Generalist Herbivore. Tomczak VV; Schweiger R; Müller C J Chem Ecol; 2016 Dec; 42(12):1247-1258. PubMed ID: 27787678 [TBL] [Abstract][Full Text] [Related]
5. An integrated functional approach to dissect systemic responses in maize to arbuscular mycorrhizal symbiosis. Gerlach N; Schmitz J; Polatajko A; Schlüter U; Fahnenstich H; Witt S; Fernie AR; Uroic K; Scholz U; Sonnewald U; Bucher M Plant Cell Environ; 2015 Aug; 38(8):1591-612. PubMed ID: 25630535 [TBL] [Abstract][Full Text] [Related]
6. Diet of Arbuscular Mycorrhizal Fungi: Bread and Butter? Rich MK; Nouri E; Courty PE; Reinhardt D Trends Plant Sci; 2017 Aug; 22(8):652-660. PubMed ID: 28622919 [TBL] [Abstract][Full Text] [Related]
7. Functional compatibility in cucumber mycorrhizas in terms of plant growth performance and foliar nutrient composition. Ravnskov S; Larsen J Plant Biol (Stuttg); 2016 Sep; 18(5):816-23. PubMed ID: 27094118 [TBL] [Abstract][Full Text] [Related]
8. The effects of mineral nitrogen limitation, competition, arbuscular mycorrhiza, and their respective interactions, on morphological and chemical plant traits of Plantago lanceolata. Pankoke H; Höpfner I; Matuszak A; Beyschlag W; Müller C Phytochemistry; 2015 Oct; 118():149-61. PubMed ID: 26296746 [TBL] [Abstract][Full Text] [Related]
9. Influence of arbuscular mycorrhizal stage and plant age on the performance of a generalist aphid. Tomczak VV; Müller C J Insect Physiol; 2017 Apr; 98():258-266. PubMed ID: 28159616 [TBL] [Abstract][Full Text] [Related]
10. High specificity in plant leaf metabolic responses to arbuscular mycorrhiza. Schweiger R; Baier MC; Persicke M; Müller C Nat Commun; 2014 May; 5():3886. PubMed ID: 24848943 [TBL] [Abstract][Full Text] [Related]
11. Aquaporin gene expression and physiological responses of Robinia pseudoacacia L. to the mycorrhizal fungus Rhizophagus irregularis and drought stress. He F; Zhang H; Tang M Mycorrhiza; 2016 May; 26(4):311-23. PubMed ID: 26590998 [TBL] [Abstract][Full Text] [Related]
12. The foliar endophytic fungal community composition in Cirsium arvense is affected by mycorrhizal colonization and soil nutrient content. Eschen R; Hunt S; Mykura C; Gange AC; Sutton BC Fungal Biol; 2010; 114(11-12):991-8. PubMed ID: 21036343 [TBL] [Abstract][Full Text] [Related]
13. Rhizophagus irregularis MUCL 41833 can colonize and improve P uptake of Plantago lanceolata after exposure to ionizing gamma radiation in root organ culture. Kothamasi D; Wannijn J; van Hees M; Nauts R; van Gompel A; Vanhoudt N; Cranenbrouck S; Declerck S; Vandenhove H Mycorrhiza; 2016 Apr; 26(3):257-62. PubMed ID: 26467250 [TBL] [Abstract][Full Text] [Related]
14. Elemental stoichiometry indicates predominant influence of potassium and phosphorus limitation on arbuscular mycorrhizal symbiosis in acidic soil at high altitude. Khan MH; Meghvansi MK; Gupta R; Veer V J Plant Physiol; 2015 Sep; 189():105-12. PubMed ID: 26555273 [TBL] [Abstract][Full Text] [Related]
15. Carbon dynamics in mycorrhizal symbioses is linked to carbon costs and phosphorus benefits. Olsson PA; Rahm J; Aliasgharzad N FEMS Microbiol Ecol; 2010 Apr; 72(1):125-31. PubMed ID: 20459516 [TBL] [Abstract][Full Text] [Related]
16. Options of partners improve carbon for phosphorus trade in the arbuscular mycorrhizal mutualism. Argüello A; O'Brien MJ; van der Heijden MG; Wiemken A; Schmid B; Niklaus PA Ecol Lett; 2016 Jun; 19(6):648-56. PubMed ID: 27074533 [TBL] [Abstract][Full Text] [Related]
17. Impact of temperature on the arbuscular mycorrhizal (AM) symbiosis: growth responses of the host plant and its AM fungal partner. Heinemeyer A; Fitter AH J Exp Bot; 2004 Feb; 55(396):525-34. PubMed ID: 14739273 [TBL] [Abstract][Full Text] [Related]
18. Phosphate systemically inhibits development of arbuscular mycorrhiza in Petunia hybrida and represses genes involved in mycorrhizal functioning. Breuillin F; Schramm J; Hajirezaei M; Ahkami A; Favre P; Druege U; Hause B; Bucher M; Kretzschmar T; Bossolini E; Kuhlemeier C; Martinoia E; Franken P; Scholz U; Reinhardt D Plant J; 2010 Dec; 64(6):1002-17. PubMed ID: 21143680 [TBL] [Abstract][Full Text] [Related]
19. Protozoa enhance foraging efficiency of arbuscular mycorrhizal fungi for mineral nitrogen from organic matter in soil to the benefit of host plants. Koller R; Rodriguez A; Robin C; Scheu S; Bonkowski M New Phytol; 2013 Jul; 199(1):203-211. PubMed ID: 23534902 [TBL] [Abstract][Full Text] [Related]