BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

562 related articles for article (PubMed ID: 25162398)

  • 1. Origin of myofibroblasts and cellular events triggering fibrosis.
    Mack M; Yanagita M
    Kidney Int; 2015 Feb; 87(2):297-307. PubMed ID: 25162398
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The origin of renal fibroblasts/myofibroblasts and the signals that trigger fibrosis.
    Sun YB; Qu X; Caruana G; Li J
    Differentiation; 2016 Sep; 92(3):102-107. PubMed ID: 27262400
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding the origin, activation and regulation of matrix-producing myofibroblasts for treatment of fibrotic disease.
    Kramann R; DiRocco DP; Humphreys BD
    J Pathol; 2013 Nov; 231(3):273-89. PubMed ID: 24006178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An immortalized cell line derived from renal erythropoietin-producing (REP) cells demonstrates their potential to transform into myofibroblasts.
    Sato K; Hirano I; Sekine H; Miyauchi K; Nakai T; Kato K; Ito S; Yamamoto M; Suzuki N
    Sci Rep; 2019 Aug; 9(1):11254. PubMed ID: 31375751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA methyltransferase inhibition restores erythropoietin production in fibrotic murine kidneys.
    Chang YT; Yang CC; Pan SY; Chou YH; Chang FC; Lai CF; Tsai MH; Hsu HL; Lin CH; Chiang WC; Wu MS; Chu TS; Chen YM; Lin SL
    J Clin Invest; 2016 Feb; 126(2):721-31. PubMed ID: 26731474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Janus-Faced: Molecular Mechanisms and Versatile Nature of Renal Fibrosis.
    Arai H; Yanagita M
    Kidney360; 2020 Jul; 1(7):697-704. PubMed ID: 35372942
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis.
    Humphreys BD; Lin SL; Kobayashi A; Hudson TE; Nowlin BT; Bonventre JV; Valerius MT; McMahon AP; Duffield JS
    Am J Pathol; 2010 Jan; 176(1):85-97. PubMed ID: 20008127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellular and molecular mechanisms in kidney fibrosis.
    Duffield JS
    J Clin Invest; 2014 Jun; 124(6):2299-306. PubMed ID: 24892703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel insights into pericyte-myofibroblast transition and therapeutic targets in renal fibrosis.
    Chang FC; Chou YH; Chen YT; Lin SL
    J Formos Med Assoc; 2012 Nov; 111(11):589-98. PubMed ID: 23217594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decoding myofibroblast origins in human kidney fibrosis.
    Kuppe C; Ibrahim MM; Kranz J; Zhang X; Ziegler S; Perales-Patón J; Jansen J; Reimer KC; Smith JR; Dobie R; Wilson-Kanamori JR; Halder M; Xu Y; Kabgani N; Kaesler N; Klaus M; Gernhold L; Puelles VG; Huber TB; Boor P; Menzel S; Hoogenboezem RM; Bindels EMJ; Steffens J; Floege J; Schneider RK; Saez-Rodriguez J; Henderson NC; Kramann R
    Nature; 2021 Jan; 589(7841):281-286. PubMed ID: 33176333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of the endothelial-to-mesenchymal transition in renal fibrosis of chronic kidney disease.
    He J; Xu Y; Koya D; Kanasaki K
    Clin Exp Nephrol; 2013 Aug; 17(4):488-97. PubMed ID: 23430391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dysfunction of fibroblasts of extrarenal origin underlies renal fibrosis and renal anemia in mice.
    Asada N; Takase M; Nakamura J; Oguchi A; Asada M; Suzuki N; Yamamura K; Nagoshi N; Shibata S; Rao TN; Fehling HJ; Fukatsu A; Minegishi N; Kita T; Kimura T; Okano H; Yamamoto M; Yanagita M
    J Clin Invest; 2011 Oct; 121(10):3981-90. PubMed ID: 21911936
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pericytes in kidney fibrosis.
    Ren S; Duffield JS
    Curr Opin Nephrol Hypertens; 2013 Jul; 22(4):471-80. PubMed ID: 23722183
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Host responses in tissue repair and fibrosis.
    Duffield JS; Lupher M; Thannickal VJ; Wynn TA
    Annu Rev Pathol; 2013 Jan; 8():241-76. PubMed ID: 23092186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Origin and function of myofibroblasts in kidney fibrosis.
    LeBleu VS; Taduri G; O'Connell J; Teng Y; Cooke VG; Woda C; Sugimoto H; Kalluri R
    Nat Med; 2013 Aug; 19(8):1047-53. PubMed ID: 23817022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Renal interstitial fibrosis: a critical evaluation of the origin of myofibroblasts.
    Barnes JL; Glass Ii WF
    Contrib Nephrol; 2011; 169():73-93. PubMed ID: 21252512
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellular mechanisms of tissue fibrosis. 3. Novel mechanisms of kidney fibrosis.
    Campanholle G; Ligresti G; Gharib SA; Duffield JS
    Am J Physiol Cell Physiol; 2013 Apr; 304(7):C591-603. PubMed ID: 23325411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bone Marrow-Derived Mesenchymal Stem Cells Transplantation Attenuates Renal Fibrosis Following Acute Kidney Injury in Rats by Diminishing Pericyte-Myofibroblast Transition and Extracellular Matrix Augment.
    Wang H; Li M; Fei L; Xie C; Ding L; Zhu C; Zeng F; Liu N
    Transplant Proc; 2023; 55(1):225-234. PubMed ID: 36604251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The chemokine receptor CXCR6 contributes to recruitment of bone marrow-derived fibroblast precursors in renal fibrosis.
    Xia Y; Yan J; Jin X; Entman ML; Wang Y
    Kidney Int; 2014 Aug; 86(2):327-37. PubMed ID: 24646857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The cellular and signalling alterations conducted by TGF-β contributing to renal fibrosis.
    Vega G; Alarcón S; San Martín R
    Cytokine; 2016 Dec; 88():115-125. PubMed ID: 27599257
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.