These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 25162610)

  • 1. Additive covalent radii for single-, double-, and triple-bonded molecules and tetrahedrally bonded crystals: a summary.
    Pyykkö P
    J Phys Chem A; 2015 Mar; 119(11):2326-37. PubMed ID: 25162610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular single-bond covalent radii for elements 1-118.
    Pyykkö P; Atsumi M
    Chemistry; 2009; 15(1):186-97. PubMed ID: 19058281
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular double-bond covalent radii for elements Li-E112.
    Pyykkö P; Atsumi M
    Chemistry; 2009 Nov; 15(46):12770-9. PubMed ID: 19856342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Classification of metal-oxide bonded interactions based on local potential- and kinetic-energy densities.
    Gibbs GV; Cox DF; Crawford TD; Rosso KM; Ross NL; Downs RT
    J Chem Phys; 2006 Feb; 124(8):084704. PubMed ID: 16512733
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bonded radii and the contraction of the electron density of the oxygen atom by bonded interactions.
    Gibbs GV; Ross NL; Cox DF; Rosso KM; Iversen BB; Spackman MA
    J Phys Chem A; 2013 Feb; 117(7):1632-40. PubMed ID: 23317288
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrostatic potentials and covalent radii.
    Politzer P; Murray JS; Lane P
    J Comput Chem; 2003 Mar; 24(4):505-11. PubMed ID: 12594793
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electronegativity effects and single covalent bond lengths of molecules in the gas phase.
    Lang PF; Smith BC
    Dalton Trans; 2014 Jun; 43(21):8016-25. PubMed ID: 24722766
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An equation to calculate internuclear distances of covalent, ionic and metallic lattices.
    Lang PF; Smith BC
    Phys Chem Chem Phys; 2015 Feb; 17(5):3355-69. PubMed ID: 25526361
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The structure and chemical bonding in the N(2)-CuX and N(2)...XCu (X = F, Cl, Br) systems studied by means of the molecular orbital and Quantum Chemical Topology methods.
    Kisowska K; Berski S; Latajka Z
    J Comput Chem; 2008 Dec; 29(16):2677-92. PubMed ID: 18484638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental and theoretical charge density distribution of the colossal magnetoresistive transition metal sulfide FeCr2S4.
    Lo Presti L; Destro R
    J Chem Phys; 2008 Jan; 128(4):044710. PubMed ID: 18247984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Properties of atoms under pressure: bonded interactions of the atoms in three perovskites.
    Gibbs GV; Wang D; Hin C; Ross NL; Cox DF; Crawford TD; Spackman MA; Angel RJ
    J Chem Phys; 2012 Oct; 137(16):164313. PubMed ID: 23126716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accounting for the differences in the structures and relative energies of the highly homoatomic np pi-np pi (n > or = 3)-bonded S2I4 2+, the Se-I pi-bonded Se2I4 2+, and their higher-energy isomers by AIM, MO, NBO, and VB methodologies.
    Brownridge S; Crawford MJ; Du H; Harcourt RD; Knapp C; Laitinen RS; Passmore J; Rautiainen JM; Suontamo RJ; Valkonen J
    Inorg Chem; 2007 Feb; 46(3):681-99. PubMed ID: 17257010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental bond critical point and local energy density properties determined for Mn-O, Fe-O, and Co-O bonded interactions for tephroite, Mn2SiO4, fayalite, Fe2SiO4, and Co2SiO4 olivine and selected organic metal complexes: comparison with properties calculated for non-transition and transition metal M-O bonded interactions for silicates and oxides.
    Gibbs GV; Downs RT; Cox DF; Rosso KM; Ross NL; Kirfel A; Lippmann T; Morgenroth W; Crawford TD
    J Phys Chem A; 2008 Sep; 112(37):8811-23. PubMed ID: 18714960
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A structure-based analysis of the vibrational spectra of nitrosyl ligands in transition-metal coordination complexes and clusters.
    De La Cruz C; Sheppard N
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Jan; 78(1):7-28. PubMed ID: 21123107
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Triple-bond covalent radii.
    Pyykkö P; Riedel S; Patzschke M
    Chemistry; 2005 Jun; 11(12):3511-20. PubMed ID: 15832398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bonding trends in molecular compounds of lanthanides: the double-bonded carbene cations LnCH(2) (+) (Ln=Sc, Y, La-Lu).
    Roos BO; Pyykkö P
    Chemistry; 2010 Jan; 16(1):270-5. PubMed ID: 19937867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On two different objectives of the concepts of ionic radii.
    Liu JB; Schwarz WH; Li J
    Chemistry; 2013 Oct; 19(44):14758-67. PubMed ID: 24105988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalysis by transition metals: metal-carbon double and triple bonds.
    Schrock RR
    Science; 1983 Jan; 219(4580):13-8. PubMed ID: 17734309
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Si-O bonded interactions in silicate crystals and molecules: a comparison.
    Gibbs GV; Jayatilaka D; Spackman MA; Cox DF; Rosso KM
    J Phys Chem A; 2006 Nov; 110(46):12678-83. PubMed ID: 17107120
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bond length and local energy density property connections for non-transition-metal oxide-bonded interactions.
    Gibbs GV; Spackman MA; Jayatilaka D; Rosso KM; Cox DF
    J Phys Chem A; 2006 Nov; 110(44):12259-66. PubMed ID: 17078623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.