BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

514 related articles for article (PubMed ID: 25162932)

  • 1. Na-doped Ni-rich LiNi0.5Co0.2Mn0.3O2 cathode material with both high rate capability and high tap density for lithium ion batteries.
    Hua W; Zhang J; Zheng Z; Liu W; Peng X; Guo XD; Zhong B; Wang YJ; Wang X
    Dalton Trans; 2014 Oct; 43(39):14824-32. PubMed ID: 25162932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compound-Hierarchical-Sphere LiNi
    Wang L; Li L; Zhang X; Wu F; Chen R
    ACS Appl Mater Interfaces; 2018 Sep; 10(38):32120-32127. PubMed ID: 30152996
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sn-Doping and Li
    Zhu H; Shen R; Tang Y; Yan X; Liu J; Song L; Fan Z; Zheng S; Chen Z
    Nanomaterials (Basel); 2020 Apr; 10(5):. PubMed ID: 32365929
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High Performance and Structural Stability of K and Cl Co-Doped LiNi
    Chen Z; Gong X; Zhu H; Cao K; Liu Q; Liu J; Li L; Duan J
    Front Chem; 2018; 6():643. PubMed ID: 30671428
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Encapsulation of LiNi0.5Co0.2Mn0.3O2 with a thin inorganic electrolyte film to reduce gas evolution in the application of lithium ion batteries.
    Kim Y
    Phys Chem Chem Phys; 2013 May; 15(17):6400-5. PubMed ID: 23525240
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A green, efficient, closed-loop direct regeneration technology for reconstructing of the LiNi
    Fan X; Tan C; Li Y; Chen Z; Li Y; Huang Y; Pan Q; Zheng F; Wang H; Li Q
    J Hazard Mater; 2021 May; 410():124610. PubMed ID: 33243647
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Na and Cl co-doping modified LiNi
    Song L; Zheng Y; Kuang Y; Zhao T; Xia Y; Xiao M; Xiang Y; Xiao Z; Tang F
    Nanotechnology; 2023 Jun; 34(36):. PubMed ID: 37257437
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamic and kinetic studies of LiNi0.5Co0.2Mn0.3O2 as a positive electrode material for Li-ion batteries using first principles.
    Dixit M; Kosa M; Lavi OS; Markovsky B; Aurbach D; Major DT
    Phys Chem Chem Phys; 2016 Mar; 18(9):6799-812. PubMed ID: 26878345
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and Electrochemical Characterization of LiNi
    Li X; Su B; Xue W; Zhang J
    Materials (Basel); 2022 May; 15(11):. PubMed ID: 35683226
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synergistic Effect between LiNi
    Sun G; Lai S; Kong X; Chen Z; Li K; Zhou R; Wang J; Zhao J
    ACS Appl Mater Interfaces; 2018 May; 10(19):16458-16466. PubMed ID: 29687996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recovery of valuable metals from LiNi
    Zhuang L; Sun C; Zhou T; Li H; Dai A
    Waste Manag; 2019 Feb; 85():175-185. PubMed ID: 30803570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In Situ Multitechnical Investigation into Capacity Fading of High-Voltage LiNi
    Shen CH; Wang Q; Chen HJ; Shi CG; Zhang HY; Huang L; Li JT; Sun SG
    ACS Appl Mater Interfaces; 2016 Dec; 8(51):35323-35335. PubMed ID: 27966872
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal Synergy Effect between LiNi0.5Co0.2Mn0.3O2 and LiMn2O4 Enhances the Safety of Blended Cathode for Lithium Ion Batteries.
    Wang J; Yu Y; Li B; Zhang P; Huang J; Wang F; Zhao S; Gan C; Zhao J
    ACS Appl Mater Interfaces; 2016 Aug; 8(31):20147-56. PubMed ID: 27448087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. One-Spot Facile Synthesis of Single-Crystal LiNi
    Xiong C; Liu F; Gao J; Jiang X
    ACS Omega; 2020 Dec; 5(47):30356-30362. PubMed ID: 33283083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanistic Insight in the Function of Phosphite Additives for Protection of LiNi0.5Co0.2Mn0.3O2 Cathode in High Voltage Li-Ion Cells.
    He M; Su CC; Peebles C; Feng Z; Connell JG; Liao C; Wang Y; Shkrob IA; Zhang Z
    ACS Appl Mater Interfaces; 2016 May; 8(18):11450-8. PubMed ID: 27090502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical Degradation Mechanism and Thermal Behaviors of the Stored LiNi
    Chen Z; Liu C; Sun G; Kong X; Lai S; Li J; Zhou R; Wang J; Zhao J
    ACS Appl Mater Interfaces; 2018 Aug; 10(30):25454-25464. PubMed ID: 29963849
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of Interface Ion Transport by Electron Ionic Conductor Construction toward High-Voltage and High-Rate LiNi
    Tian Y; Li Y; Shen H; Cheng X; Cheng Y; Zhang W; Yu P; Yang Z; Xue L; Fan Y; Zhao L; Peng J; Wang J; Li Z; Xie M; Liu H; Dou S
    Adv Sci (Weinh); 2024 Jun; ():e2402380. PubMed ID: 38837633
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding the Role of Minor Molybdenum Doping in LiNi
    Breuer O; Chakraborty A; Liu J; Kravchuk T; Burstein L; Grinblat J; Kauffman Y; Gladkih A; Nayak P; Tsubery M; Frenkel AI; Talianker M; Major DT; Markovsky B; Aurbach D
    ACS Appl Mater Interfaces; 2018 Sep; 10(35):29608-29621. PubMed ID: 30095889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative Investigation of 0.5Li
    Wang PB; Luo MZ; Zheng JC; He ZJ; Tong H; Yu WJ
    Front Chem; 2018; 6():159. PubMed ID: 29868562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative Characterization of the Surface Evolution for LiNi
    Zheng H; Qu Q; Zhu G; Liu G; Battaglia VS; Zheng H
    ACS Appl Mater Interfaces; 2017 Apr; 9(14):12445-12452. PubMed ID: 28338316
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.