These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 25163053)

  • 1. A novel scheme for nanoparticle steering in blood vessels using a functionalized magnetic field.
    Tehrani MD; Yoon JH; Kim MO; Yoon J
    IEEE Trans Biomed Eng; 2015 Jan; 62(1):303-13. PubMed ID: 25163053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetic drug targeting by ferromagnetic microwires implanted within blood vessels.
    Hournkumnuard K; Natenapit M
    Med Phys; 2013 Jun; 40(6):062302. PubMed ID: 23718604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational Assessment of Unsteady Flow Effects on Magnetic Nanoparticle Targeting Efficiency in a Magnetic Stented Carotid Bifurcation Artery.
    Hewlin RL; Smith M; Kizito JP
    Cardiovasc Eng Technol; 2023 Oct; 14(5):694-712. PubMed ID: 37723333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a Two-Way Coupled Eulerian-Lagrangian Computational Magnetic Nanoparticle Targeting Model for Pulsatile Flow in a Patient-Specific Diseased Left Carotid Bifurcation Artery.
    Hewlin RL; Ciero A; Kizito JP
    Cardiovasc Eng Technol; 2019 Jun; 10(2):299-313. PubMed ID: 30927212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrodynamic modeling of targeted magnetic-particle delivery in a blood vessel.
    Weng HC
    J Biomech Eng; 2013 Mar; 135(3):34504. PubMed ID: 24231820
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A bloodstream simulation based on particle method.
    Nakagawa M; Mukai N; Niki K; Takanashi S
    Stud Health Technol Inform; 2011; 163():389-93. PubMed ID: 21335825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluid mechanics aspects of magnetic drug targeting.
    Odenbach S
    Biomed Tech (Berl); 2015 Oct; 60(5):477-83. PubMed ID: 26415215
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Behavior of nanoparticle clouds around a magnetized microsphere under magnetic and flow fields.
    Magnet C; Kuzhir P; Bossis G; Meunier A; Nave S; Zubarev A; Lomenech C; Bashtovoi V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032310. PubMed ID: 24730845
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Euler-Lagrange numerical simulation of improved magnetic drug delivery in a three-dimensional CT-based carotid artery bifurcation.
    Aryan H; Beigzadeh B; Siavashi M
    Comput Methods Programs Biomed; 2022 Jun; 219():106778. PubMed ID: 35381489
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An in vitro study of magnetic particle targeting in small blood vessels.
    Udrea LE; Strachan NJ; Bădescu V; Rotariu O
    Phys Med Biol; 2006 Oct; 51(19):4869-81. PubMed ID: 16985276
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Field-flow fractionation of magnetic particles in a cyclic magnetic field.
    Bi Y; Pan X; Chen L; Wan QH
    J Chromatogr A; 2011 Jun; 1218(25):3908-14. PubMed ID: 21592484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In silico studies of magnetic microparticle aggregations in fluid environments for MRI-guided drug delivery.
    Vartholomeos P; Mavroidis C
    IEEE Trans Biomed Eng; 2012 Nov; 59(11):3028-38. PubMed ID: 22907964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetic field-enhanced sedimentation of nanopowder magnetite in water flow.
    Bakhteeva Iu; Medvedeva I; Byzov I; Zhakov S; Yermakov A; Uimin M; Shchegoleva N
    Environ Technol; 2015; 36(13-16):1828-36. PubMed ID: 25650300
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of trajectories for targeting of magnetic nanoparticles in blood vessels.
    Heidsieck A; Vosen S; Zimmermann K; Wenzel D; Gleich B
    Mol Pharm; 2012 Jul; 9(7):2029-38. PubMed ID: 22663555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoparticle impacts reveal magnetic field induced agglomeration and reduced dissolution rates.
    Tschulik K; Compton RG
    Phys Chem Chem Phys; 2014 Jul; 16(27):13909-13. PubMed ID: 24898763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational simulations of magnetic particle capture in arterial flows.
    Haverkort JW; Kenjeres S; Kleijn CR
    Ann Biomed Eng; 2009 Dec; 37(12):2436-48. PubMed ID: 19760148
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A meshless rheological model for blood-vessel interaction in endovascular simulation.
    Chui YP; Heng PA
    Prog Biophys Mol Biol; 2010 Dec; 103(2-3):252-61. PubMed ID: 20868705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pulsed magnetohydrodynamic blood flow in a rigid vessel under physiological pressure gradient.
    Abi-Abdallah D; Drochon A; Robin V; Fokapu O
    Comput Methods Biomech Biomed Engin; 2009 Aug; 12(4):445-58. PubMed ID: 19242832
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [The numerical simulation of pulsatile flow in a tapered blood vessel].
    Qiu L; Fan Y; Dong B; Yuan Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Aug; 21(4):558-61. PubMed ID: 15357431
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Particle size, magnetic field, and blood velocity effects on particle retention in magnetic drug targeting.
    Cherry EM; Maxim PG; Eaton JK
    Med Phys; 2010 Jan; 37(1):175-82. PubMed ID: 20175479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.