These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 25163494)

  • 1. Quantum mechanical origin of the plasmon: from molecular systems to nanoparticles.
    Guidez EB; Aikens CM
    Nanoscale; 2014 Oct; 6(20):11512-27. PubMed ID: 25163494
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum sized gold nanoclusters with atomic precision.
    Qian H; Zhu M; Wu Z; Jin R
    Acc Chem Res; 2012 Sep; 45(9):1470-9. PubMed ID: 22720781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface plasmons in quantum-sized noble-metal clusters: TDDFT quantum calculations and the classical picture of charge oscillations.
    Weissker HC; López-Lozano X
    Phys Chem Chem Phys; 2015 Nov; 17(42):28379-86. PubMed ID: 26104995
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Size-Dependent Plasmonic Resonances from Large-Scale Quantum Simulations.
    Xiang H; Zhang X; Neuhauser D; Lu G
    J Phys Chem Lett; 2014 Apr; 5(7):1163-9. PubMed ID: 26274465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Birth of the localized surface plasmon resonance in monolayer-protected gold nanoclusters.
    Malola S; Lehtovaara L; Enkovaara J; Häkkinen H
    ACS Nano; 2013 Nov; 7(11):10263-70. PubMed ID: 24107127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A hybrid atomistic electrodynamics-quantum mechanical approach for simulating surface-enhanced Raman scattering.
    Payton JL; Morton SM; Moore JE; Jensen L
    Acc Chem Res; 2014 Jan; 47(1):88-99. PubMed ID: 23965411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Indium tin oxide nanoparticles with compositionally tunable surface plasmon resonance frequencies in the near-IR region.
    Kanehara M; Koike H; Yoshinaga T; Teranishi T
    J Am Chem Soc; 2009 Dec; 131(49):17736-7. PubMed ID: 19921844
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Au
    Sakthivel NA; Stener M; Sementa L; Fortunelli A; Ramakrishna G; Dass A
    J Phys Chem Lett; 2018 Mar; 9(6):1295-1300. PubMed ID: 29493241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmon Length: A Universal Parameter to Describe Size Effects in Gold Nanoparticles.
    Ringe E; Langille MR; Sohn K; Zhang J; Huang J; Mirkin CA; Van Duyne RP; Marks LD
    J Phys Chem Lett; 2012 Jun; 3(11):1479-83. PubMed ID: 26285624
    [TBL] [Abstract][Full Text] [Related]  

  • 12. From plasmon spectra of metallic to vibron spectra of dielectric nanoparticles.
    Preston TC; Signorell R
    Acc Chem Res; 2012 Sep; 45(9):1501-10. PubMed ID: 22738352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum plasmonics: optical properties of a nanomatryushka.
    Kulkarni V; Prodan E; Nordlander P
    Nano Lett; 2013; 13(12):5873-9. PubMed ID: 24205800
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface chemistry: a non-negligible parameter in determining optical properties of small colloidal metal nanoparticles.
    Sun Y; Gray SK; Peng S
    Phys Chem Chem Phys; 2011 Jul; 13(25):11814-26. PubMed ID: 21611673
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How To Identify Plasmons from the Optical Response of Nanostructures.
    Zhang R; Bursi L; Cox JD; Cui Y; Krauter CM; Alabastri A; Manjavacas A; Calzolari A; Corni S; Molinari E; Carter EA; García de Abajo FJ; Zhang H; Nordlander P
    ACS Nano; 2017 Jul; 11(7):7321-7335. PubMed ID: 28651057
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum plasmonics: optical properties and tunability of metallic nanorods.
    Zuloaga J; Prodan E; Nordlander P
    ACS Nano; 2010 Sep; 4(9):5269-76. PubMed ID: 20698558
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamical coupling of plasmons and molecular excitations by hybrid quantum/classical calculations: time-domain approach.
    Sakko A; Rossi TP; Nieminen RM
    J Phys Condens Matter; 2014 Aug; 26(31):315013. PubMed ID: 25028486
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum finite-size effects in graphene plasmons.
    Thongrattanasiri S; Manjavacas A; García de Abajo FJ
    ACS Nano; 2012 Feb; 6(2):1766-75. PubMed ID: 22217250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A discrete interaction model/quantum mechanical method to describe the interaction of metal nanoparticles and molecular absorption.
    Morton SM; Jensen L
    J Chem Phys; 2011 Oct; 135(13):134103. PubMed ID: 21992278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model.
    Jain PK; Eustis S; El-Sayed MA
    J Phys Chem B; 2006 Sep; 110(37):18243-53. PubMed ID: 16970442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.