These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 25163494)

  • 21. Non-empirical atomistic dipole-interaction-model for quantum plasmon simulation of nanoparticles.
    Lim J; Kang S; Kim J; Kim WY; Ryu S
    Sci Rep; 2017 Nov; 7(1):15775. PubMed ID: 29150649
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Plasmon resonances in linear noble-metal chains.
    Gao B; Ruud K; Luo Y
    J Chem Phys; 2012 Nov; 137(19):194307. PubMed ID: 23181306
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dependence of the localized surface plasmon resonance of noble metal quasispherical nanoparticles on their crystallinity-related morphologies.
    Yang P; Portalès H; Pileni MP
    J Chem Phys; 2011 Jan; 134(2):024507. PubMed ID: 21241120
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Plasmon Excitations in Mixed Metallic Nanoarrays.
    Conley KM; Nayyar N; Rossi TP; Kuisma M; Turkowski V; Puska MJ; Rahman TS
    ACS Nano; 2019 May; 13(5):5344-5355. PubMed ID: 30973699
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantum dynamical simulations of local field enhancement in metal nanoparticles.
    Negre CF; Perassi EM; Coronado EA; Sánchez CG
    J Phys Condens Matter; 2013 Mar; 25(12):125304. PubMed ID: 23449278
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Single-molecule Raman spectroscopy: a probe of surface dynamics and plasmonic fields.
    Haran G
    Acc Chem Res; 2010 Aug; 43(8):1135-43. PubMed ID: 20521801
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Combined quantum mechanics (TDDFT) and classical electrodynamics (Mie theory) methods for calculating surface enhanced Raman and hyper-Raman spectra.
    Mullin J; Valley N; Blaber MG; Schatz GC
    J Phys Chem A; 2012 Sep; 116(38):9574-81. PubMed ID: 22946645
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.
    Lee KS; El-Sayed MA
    J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772
    [TBL] [Abstract][Full Text] [Related]  

  • 29. On the linear response and scattering of an interacting molecule-metal system.
    Masiello DJ; Schatz GC
    J Chem Phys; 2010 Feb; 132(6):064102. PubMed ID: 20151728
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Radiative and nonradiative properties of single plasmonic nanoparticles and their assemblies.
    Chang WS; Willingham B; Slaughter LS; Dominguez-Medina S; Swanglap P; Link S
    Acc Chem Res; 2012 Nov; 45(11):1936-45. PubMed ID: 22512668
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Correlating the structure and localized surface plasmon resonance of single silver right bipyramids.
    Ringe E; Zhang J; Langille MR; Mirkin CA; Marks LD; Van Duyne RP
    Nanotechnology; 2012 Nov; 23(44):444005. PubMed ID: 23080080
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Plasmon-in-a-Box: On the Physical Nature of Few-Carrier Plasmon Resonances.
    Jain PK
    J Phys Chem Lett; 2014 Sep; 5(18):3112-9. PubMed ID: 26276321
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interplay of collective excitations in quantum-well intersubband resonances.
    Li J; Ning CZ
    Phys Rev Lett; 2003 Aug; 91(9):097401. PubMed ID: 14525208
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes.
    Eustis S; el-Sayed MA
    Chem Soc Rev; 2006 Mar; 35(3):209-17. PubMed ID: 16505915
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The nonmonotonous shift of quantum plasmon resonance and plasmon-enhanced photocatalytic activity of gold nanoparticles.
    Ding SJ; Yang DJ; Li JL; Pan GM; Ma L; Lin YJ; Wang JH; Zhou L; Feng M; Xu H; Gao S; Wang QQ
    Nanoscale; 2017 Mar; 9(9):3188-3195. PubMed ID: 28221377
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Plasmon resonance analysis with configuration interaction.
    Guidez EB; Aikens CM
    Phys Chem Chem Phys; 2014 Aug; 16(29):15501-9. PubMed ID: 24953630
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The quenching effect of silver nanoparticles on 2-amino-3-bromo-1, 4-naphthoquinone using fluorescence spectroscopy.
    Manikandan P; Pushpam S; Sasirekha V; Rani JS; Ramakrishnan V
    Spectrochim Acta A Mol Biomol Spectrosc; 2014; 121():276-81. PubMed ID: 24252292
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Orbital-free tensor density functional theory.
    Ovchinnikov IV; Neuhauser D
    J Chem Phys; 2006 Jan; 124(2):024105. PubMed ID: 16422569
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Geometrical Mie theory for resonances in nanoparticles of any shape.
    Papoff F; Hourahine B
    Opt Express; 2011 Oct; 19(22):21432-44. PubMed ID: 22108993
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Particle plasmon resonances in L-shaped gold nanoparticles.
    Husu H; Mäkitalo J; Laukkanen J; Kuittinen M; Kauranen M
    Opt Express; 2010 Aug; 18(16):16601-6. PubMed ID: 20721051
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.