These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 25163555)
21. Branchial ionocyte organization and ion-transport protein expression in juvenile alewives acclimated to freshwater or seawater. Christensen AK; Hiroi J; Schultz ET; McCormick SD J Exp Biol; 2012 Feb; 215(Pt 4):642-52. PubMed ID: 22279071 [TBL] [Abstract][Full Text] [Related]
22. WNK1 and p38-MAPK distribution in ionocytes and accessory cells of euryhaline teleost fish implies ionoregulatory function. Marshall WS; Cozzi RRF; Spieker M Biol Open; 2017 Jul; 6(7):956-966. PubMed ID: 28522431 [TBL] [Abstract][Full Text] [Related]
23. The effects of acute transfer to freshwater on ion transporters of the pharyngeal cavity in European seabass (Dicentrarchus labrax). Maugars G; Manirafasha MC; Grousset E; Boulo V; Lignot JH Fish Physiol Biochem; 2018 Oct; 44(5):1393-1408. PubMed ID: 29923042 [TBL] [Abstract][Full Text] [Related]
24. Enhanced expression of ncc1 and clc2c in the kidney and urinary bladder accompanies freshwater acclimation in Mozambique tilapia. Breves JP; Nelson NN; Koltenyuk V; Petro-Sakuma CK; Celino-Brady FT; Seale AP Comp Biochem Physiol A Mol Integr Physiol; 2021 Oct; 260():111021. PubMed ID: 34174427 [TBL] [Abstract][Full Text] [Related]
25. Comparisons of two types of teleostean pseudobranchs, silver moony (Monodactylus argenteus) and tilapia (Oreochromis mossambicus), with salinity-dependent morphology and ion transporter expression. Yang SH; Kang CK; Hu YC; Yen LC; Tsai SC; Hsieh YL; Lee TH J Comp Physiol B; 2015 Aug; 185(6):677-93. PubMed ID: 26033267 [TBL] [Abstract][Full Text] [Related]
26. Immunohistochemical characterization and change in location of branchial ionocytes after transfer from freshwater to seawater in the euryhaline obscure puffer, Takifugu obscurus. Ding T; Shi Y; Duan W; Hu S; Zhao Z J Comp Physiol B; 2020 Sep; 190(5):585-596. PubMed ID: 32715333 [TBL] [Abstract][Full Text] [Related]
27. Salinity-dependent changes in branchial morphometry and Na Ding YC; Lee SS; Peng SK; Yang WK; Lee TH J Exp Zool A Ecol Integr Physiol; 2023 Jun; 339(5):451-463. PubMed ID: 36878859 [TBL] [Abstract][Full Text] [Related]
28. A Stenohaline Medaka, Oryzias woworae, Increases Expression of Gill Na(+), K(+)-ATPase and Na(+), K(+), 2Cl(-) Cotransporter 1 to Tolerate Osmotic Stress. Juo JJ; Kang CK; Yang WK; Yang SY; Lee TH Zoolog Sci; 2016 Aug; 33(4):414-25. PubMed ID: 27498801 [TBL] [Abstract][Full Text] [Related]
29. Potassium Regulation in Medaka (Oryzias latipes) Larvae Acclimated to Fresh Water: Passive Uptake and Active Secretion by the Skin Cells. Horng JL; Yu LL; Liu ST; Chen PY; Lin LY Sci Rep; 2017 Nov; 7(1):16215. PubMed ID: 29176723 [TBL] [Abstract][Full Text] [Related]
30. Expression profiles of branchial FXYD proteins in the brackish medaka Oryzias dancena: a potential saltwater fish model for studies of osmoregulation. Yang WK; Kang CK; Chang CH; Hsu AD; Lee TH; Hwang PP PLoS One; 2013; 8(1):e55470. PubMed ID: 23383199 [TBL] [Abstract][Full Text] [Related]
31. Gene expression and cellular localization of ROMKs in the gills and kidney of Mozambique tilapia acclimated to fresh water with high potassium concentration. Furukawa F; Watanabe S; Kakumura K; Hiroi J; Kaneko T Am J Physiol Regul Integr Comp Physiol; 2014 Dec; 307(11):R1303-12. PubMed ID: 25298512 [TBL] [Abstract][Full Text] [Related]
32. Role of the Basolateral Na Liu ST; Horng JL; Lin LY Front Physiol; 2022; 13():870967. PubMed ID: 35399277 [TBL] [Abstract][Full Text] [Related]
33. Exposure to silver impairs the osmoregulatory capability of euryhaline medaka (Oryzias latipes) subjected to salinity changes. Horng JL; Lee YS; Lin LY Aquat Toxicol; 2023 Jul; 260():106592. PubMed ID: 37247576 [TBL] [Abstract][Full Text] [Related]
34. Gene expression after freshwater transfer in gills and opercular epithelia of killifish: insight into divergent mechanisms of ion transport. Scott GR; Claiborne JB; Edwards SL; Schulte PM; Wood CM J Exp Biol; 2005 Jul; 208(Pt 14):2719-29. PubMed ID: 16000541 [TBL] [Abstract][Full Text] [Related]
35. Distribution and dynamics of branchial ionocytes in houndshark reared in full-strength and diluted seawater environments. Takabe S; Inokuchi M; Yamaguchi Y; Hyodo S Comp Biochem Physiol A Mol Integr Physiol; 2016 Aug; 198():22-32. PubMed ID: 27040185 [TBL] [Abstract][Full Text] [Related]
36. New insights into gill ionocyte and ion transporter function in euryhaline and diadromous fish. Hiroi J; McCormick SD Respir Physiol Neurobiol; 2012 Dec; 184(3):257-68. PubMed ID: 22850177 [TBL] [Abstract][Full Text] [Related]
37. Salt secretion is linked to acid-base regulation of ionocytes in seawater-acclimated medaka: new insights into the salt-secreting mechanism. Liu ST; Horng JL; Chen PY; Hwang PP; Lin LY Sci Rep; 2016 Aug; 6():31433. PubMed ID: 27511107 [TBL] [Abstract][Full Text] [Related]
38. Claudin-6, -10d and -10e contribute to seawater acclimation in the euryhaline puffer fish Tetraodon nigroviridis. Bui P; Kelly SP J Exp Biol; 2014 May; 217(Pt 10):1758-67. PubMed ID: 24526724 [TBL] [Abstract][Full Text] [Related]
39. Retention of ion channel genes expression increases Japanese medaka survival during seawater reacclimation. Liao BK; Lai YW; Liu ST; Chou MY J Comp Physiol B; 2023 Jan; 193(1):81-93. PubMed ID: 36264377 [TBL] [Abstract][Full Text] [Related]
40. Subcellular localization of Na Wong MKS; Tsuneoka Y; Tsukada T Fish Physiol Biochem; 2023 Aug; 49(4):751-767. PubMed ID: 37464181 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]