These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 25163696)

  • 1. The influence of relative body breadth on the diaphyseal morphology of the human lower limb.
    Davies TG; Stock JT
    Am J Hum Biol; 2014; 26(6):822-35. PubMed ID: 25163696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of body proportions on femoral and tibial midshaft shape in hunter-gatherers.
    Shaw CN; Stock JT
    Am J Phys Anthropol; 2011 Jan; 144(1):22-9. PubMed ID: 20623683
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cross-sectional structural variation relative to midshaft along hominine diaphyses. II. The hind limb.
    Mongle CS; Wallace IJ; Grine FE
    Am J Phys Anthropol; 2015 Nov; 158(3):398-407. PubMed ID: 26174045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Declining tibial curvature parallels ∼6150 years of decreasing mobility in Central European agriculturalists.
    Macintosh AA; Davies TG; Pinhasi R; Stock JT
    Am J Phys Anthropol; 2015 Jun; 157(2):260-75. PubMed ID: 25677783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ontogenetic and morphological variation in primate long bones reflects signals of size and behavior.
    Nadell JA; Elton S; Kovarovic K
    Am J Phys Anthropol; 2021 Feb; 174(2):327-351. PubMed ID: 33368154
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of cortical bone geometry in the human femoral and tibial diaphysis.
    Gosman JH; Hubbell ZR; Shaw CN; Ryan TM
    Anat Rec (Hoboken); 2013 May; 296(5):774-87. PubMed ID: 23533061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Architecture of the femoral and tibial diaphyses in relation to body mass and composition: Research from whole-body CT scans of adult humans.
    Lacoste Jeanson A; Santos F; Villa C; Banner J; Brůžek J
    Am J Phys Anthropol; 2018 Dec; 167(4):813-826. PubMed ID: 30357817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Limb bone bilateral asymmetry: variability and commonality among modern humans.
    Auerbach BM; Ruff CB
    J Hum Evol; 2006 Feb; 50(2):203-18. PubMed ID: 16310833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Risk Minimization and a Late Holocene Increase in Mobility at Roonka Flat, South Australia: An Analysis of Lower Limb Bone Diaphyseal Shape.
    Hill EC; Durband AC; Walshe K
    Am J Phys Anthropol; 2016 Sep; 161(1):94-103. PubMed ID: 27192401
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Periosteal versus true cross-sectional geometry: a comparison along humeral, femoral, and tibial diaphyses.
    Macintosh AA; Davies TG; Ryan TM; Shaw CN; Stock JT
    Am J Phys Anthropol; 2013 Mar; 150(3):442-52. PubMed ID: 23359138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phenotypic plasticity and constraint along the upper and lower limb diaphyses of Homo sapiens.
    Nadell JA; Shaw CN
    Am J Phys Anthropol; 2016 Mar; 159(3):410-22. PubMed ID: 26536841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel method for analyzing long bone diaphyseal cross-sectional geometry. A GNU Octave CSG Toolkit.
    Bertsatos A; Chovalopoulou ME
    Forensic Sci Int; 2019 Apr; 297():65-71. PubMed ID: 30776779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intensity, repetitiveness, and directionality of habitual adolescent mobility patterns influence the tibial diaphysis morphology of athletes.
    Shaw CN; Stock JT
    Am J Phys Anthropol; 2009 Sep; 140(1):149-59. PubMed ID: 19358289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Periosteal thickness and cellularity in mid-diaphyseal cross-sections from human femora and tibiae of aged donors.
    Moore SR; Milz S; Knothe Tate ML
    J Anat; 2014 Feb; 224(2):142-9. PubMed ID: 24175932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Which measures of diaphyseal robusticity are robust? A comparison of external methods of quantifying the strength of long bone diaphyses to cross-sectional geometric properties.
    Stock JT; Shaw CN
    Am J Phys Anthropol; 2007 Nov; 134(3):412-23. PubMed ID: 17632794
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Do bone geometric properties of the proximal femoral diaphysis reflect loading history, muscle properties, or body dimensions?
    Niinimäki S; Narra N; Härkönen L; Abe S; Nikander R; Hyttinen J; Knüsel CJ; Sievänen H
    Am J Hum Biol; 2019 Jul; 31(4):e23246. PubMed ID: 31004392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scaling effect on the mid-diaphysis properties of long bones-the case of the Cervidae (deer).
    Amson E; Kolb C
    Naturwissenschaften; 2016 Aug; 103(7-8):58. PubMed ID: 27350329
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic variations and physical activity as determinants of limb bone morphology: an experimental approach using a mouse model.
    Wallace IJ; Tommasini SM; Judex S; Garland T; Demes B
    Am J Phys Anthropol; 2012 May; 148(1):24-35. PubMed ID: 22331623
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Age-related variation in limb bone diaphyseal structure among Inuit foragers from Point Hope, northern Alaska.
    Wallace IJ; Nesbitt A; Mongle C; Gould ES; Grine FE
    Arch Osteoporos; 2014; 9():202. PubMed ID: 25491658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Postnatal ontogeny of tibia and femur form in two human populations: a multivariate morphometric analysis.
    Frelat MA; Mittereocker P
    Am J Hum Biol; 2011; 23(6):796-804. PubMed ID: 21957036
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.