BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 25163933)

  • 21. Antibacterial activity of water-soluble extract from pine needles of Cedrus deodara.
    Zeng WC; He Q; Sun Q; Zhong K; Gao H
    Int J Food Microbiol; 2012 Feb; 153(1-2):78-84. PubMed ID: 22104118
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Preparation of tyrosinase inhibitors and antibrowning agents using green technology.
    Dong X; Zhang Y; He JL; Zhang S; Zeng MM; Chen J; Zheng ZP
    Food Chem; 2016 Apr; 197(Pt A):589-96. PubMed ID: 26616992
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Study on the chemical constituents from pine needles of Cedrus deodara].
    Zhang JM; Shi XF; Li C; Fan B; Wang DD; Liu DY
    Zhong Yao Cai; 2010 Feb; 33(2):215-8. PubMed ID: 20575413
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect directed synthesis of a new tyrosinase inhibitor with anti-browning activity.
    Cabezudo I; Ayelen Ramallo I; Alonso VL; Furlan RLE
    Food Chem; 2021 Mar; 341(Pt 1):128232. PubMed ID: 33039744
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of antibrowning dips and controlled atmosphere storage on the physico-chemical, visual and nutritional quality of minimally processed "Rojo Brillante" persimmons.
    Sanchís E; Mateos M; Pérez-Gago MB
    Food Sci Technol Int; 2017 Jan; 23(1):3-16. PubMed ID: 27251678
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Studies on the chemical constituents from pine needles of Cedrus deodara (II)].
    Zhang JM; Shi XF; Ma QH; He FJ; Wang DD; Liu DY; Fan B
    Zhong Yao Cai; 2010 Jul; 33(7):1084-6. PubMed ID: 21137361
    [TBL] [Abstract][Full Text] [Related]  

  • 27. New galloylated flavanonols from the Australian plant Glochidion sumatranum.
    Yin S; Sykes ML; Davis RA; Shelper T; Avery VM; Camp D; Quinn RJ
    Planta Med; 2010 Nov; 76(16):1877-81. PubMed ID: 20597044
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Preparation, characterization, and preliminary antibrowning evaluations of norartocarpetin microemulsions.
    Zheng ZP; Dong X; Yuan K; Lan S; Zhu Q; Wang M; Chen J
    J Agric Food Chem; 2015 Feb; 63(5):1615-21. PubMed ID: 25603116
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Gastric antisecretory and antiulcer activities of Cedrus deodara (Roxb.) Loud. in Wistar rats.
    Kumar A; Singh V; Chaudhary AK
    J Ethnopharmacol; 2011 Mar; 134(2):294-7. PubMed ID: 21182918
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Combination of sodium chlorite and calcium propionate reduces enzymatic browning and microbial population of fresh-cut "Granny Smith" apples.
    Guan W; Fan X
    J Food Sci; 2010 Mar; 75(2):M72-7. PubMed ID: 20492244
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inhibitory effects of α-Na8SiW11CoO40 on tyrosinase and its application in controlling browning of fresh-cut apples.
    Chen BN; Xing R; Wang F; Zheng AP; Wang L
    Food Chem; 2015 Dec; 188():177-83. PubMed ID: 26041180
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tyrosinase inhibition by extracts and constituents of Sideroxylon inerme L. stem bark, used in South Africa for skin lightening.
    Momtaz S; Mapunya BM; Houghton PJ; Edgerly C; Hussein A; Naidoo S; Lall N
    J Ethnopharmacol; 2008 Oct; 119(3):507-12. PubMed ID: 18573327
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Antibacterial Effect of 2R,3R-dihydromyricetin on the Cellular Functions of Staphylococcus aureus.
    Wu YP; Bai JR; Zhong K; Bai DD; Huang YN; Xiao K; Ran Y; Gao H
    Biosci Biotechnol Biochem; 2018 Jan; 82(1):135-138. PubMed ID: 29235425
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effect of antibrowning agents on inhibition of potato browning, volatile organic compound profile, and microbial inhibition.
    Mosneaguta R; Alvarez V; Barringer SA
    J Food Sci; 2012 Nov; 77(11):C1234-40. PubMed ID: 23106136
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of Cedrus deodara extract on the physiochemical and sensory properties of salted meat and its action mechanism.
    Xu QD; Zhou ZQ; Yu J; He Q; Sun Q; Zeng WC
    J Food Sci; 2021 Jul; 86(7):2910-2923. PubMed ID: 34147039
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Assessment of Cedrus deodara root oil on the histopathological changes in the gastrointestinal tissues in rats.
    Perveen R; Azmi MA; Zaidi IH; Naqvi SN; Mahmood SM; Ajmal K; Usman M
    Pak J Pharm Sci; 2013 May; 26(3):571-6. PubMed ID: 23625432
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structure characterization of proanthocyanidins from Caryota ochlandra Hance and their bioactivities.
    Chen XX; Feng HL; Ding YM; Chai WM; Xiang ZH; Shi Y; Chen QX
    Food Chem; 2014 Jul; 155():1-8. PubMed ID: 24594146
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phytotoxic phenols from the needles of Cedrus deodara.
    Ma J; Lu C; Bai L; Zhang J; Shen Y
    Phytochemistry; 2024 Mar; 219():113977. PubMed ID: 38215813
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluation of the anti-cancer potential of Cedrus deodara total lignans by inducing apoptosis of A549 cells.
    Shi X; Du R; Zhang J; Lei Y; Guo H
    BMC Complement Altern Med; 2019 Oct; 19(1):281. PubMed ID: 31651320
    [TBL] [Abstract][Full Text] [Related]  

  • 40. New antioxidant treatment with yerba mate ( Ilex paraguariensis) infusion for fresh-cut apples: Modeling, optimization, and acceptability.
    Rodríguez-Arzuaga M; Piagentini AM
    Food Sci Technol Int; 2018 Apr; 24(3):223-231. PubMed ID: 29182010
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.