BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 25164078)

  • 1. A facile and green method to hydrophobize films of cellulose nanofibrils and silica by laccase-mediated coupling of nonpolar colloidal particles.
    Cusola O; Roncero MB; Vidal T; Rojas OJ
    ChemSusChem; 2014 Oct; 7(10):2868-78. PubMed ID: 25164078
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laccase-mediated coupling of nonpolar chains for the hydrophobization of lignocellulose.
    Garcia-Ubasart J; Vidal T; Torres AL; Rojas OJ
    Biomacromolecules; 2013 May; 14(5):1637-44. PubMed ID: 23570533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Colloidal ionic assembly between anionic native cellulose nanofibrils and cationic block copolymer micelles into biomimetic nanocomposites.
    Wang M; Olszewska A; Walther A; Malho JM; Schacher FH; Ruokolainen J; Ankerfors M; Laine J; Berglund LA; Osterberg M; Ikkala O
    Biomacromolecules; 2011 Jun; 12(6):2074-81. PubMed ID: 21517114
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new procedure for the hydrophobization of cellulose fibre using laccase and a hydrophobic phenolic compound.
    Garcia-Ubasart J; Colom JF; Vila C; Gómez Hernández N; Blanca Roncero M; Vidal T
    Bioresour Technol; 2012 May; 112():341-4. PubMed ID: 22440576
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzymatic pretreatment for cellulose nanofibrils isolation from bagasse pulp: Transition of cellulose crystal structure.
    Tao P; Zhang Y; Wu Z; Liao X; Nie S
    Carbohydr Polym; 2019 Jun; 214():1-7. PubMed ID: 30925976
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modification of cellulose nanofibrils with luminescent carbon dots.
    Junka K; Guo J; Filpponen I; Laine J; Rojas OJ
    Biomacromolecules; 2014 Mar; 15(3):876-81. PubMed ID: 24456129
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Model films from native cellulose nanofibrils. Preparation, swelling, and surface interactions.
    Ahola S; Salmi J; Johansson LS; Laine J; Osterberg M
    Biomacromolecules; 2008 Apr; 9(4):1273-82. PubMed ID: 18307305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioactive cellulose nanofibrils for specific human IgG binding.
    Zhang Y; Carbonell RG; Rojas OJ
    Biomacromolecules; 2013 Dec; 14(12):4161-8. PubMed ID: 24131287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the morphology of cellulose nanofibrils obtained by TEMPO-mediated oxidation and mechanical treatment.
    Gamelas JA; Pedrosa J; Lourenço AF; Mutjé P; González I; Chinga-Carrasco G; Singh G; Ferreira PJ
    Micron; 2015 May; 72():28-33. PubMed ID: 25768897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrophobic properties conferred to Kraft pulp by a laccase-catalysed treatment with lauryl gallate.
    Reynaud C; Tapin-Lingua S; Elegir G; Petit-Conil M; Baumberger S
    J Biotechnol; 2013 Sep; 167(3):302-8. PubMed ID: 23876480
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Introduction of aldehyde vs. carboxylic groups to cellulose nanofibers using laccase/TEMPO mediated oxidation.
    Jaušovec D; Vogrinčič R; Kokol V
    Carbohydr Polym; 2015 Feb; 116():74-85. PubMed ID: 25458275
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Designing Cellulose Nanofibrils for Stabilization of Fluid Interfaces.
    Bertsch P; Arcari M; Geue T; Mezzenga R; Nyström G; Fischer P
    Biomacromolecules; 2019 Dec; 20(12):4574-4580. PubMed ID: 31714073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein Amyloid Fibrils as Template for the Synthesis of Silica Nanofibers, and Their Use to Prepare Superhydrophobic, Lotus-Like Surfaces.
    Rima S; Lattuada M
    Small; 2018 Nov; 14(46):e1802854. PubMed ID: 30350472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct force measurements between cellulose surfaces and colloidal silica particles.
    Radtchenko IL; Papastavrou G; Borkovec M
    Biomacromolecules; 2005; 6(6):3057-66. PubMed ID: 16283727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A review: potential usage of cellulose nanofibers (CNF) for enzyme immobilization via covalent interactions.
    Sulaiman S; Mokhtar MN; Naim MN; Baharuddin AS; Sulaiman A
    Appl Biochem Biotechnol; 2015 Feb; 175(4):1817-42. PubMed ID: 25427594
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the interaction between PEDOT:PSS and cellulose: Adsorption mechanisms and controlling factors.
    Jain K; Reid MS; Larsson PA; Wågberg L
    Carbohydr Polym; 2021 May; 260():117818. PubMed ID: 33712162
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of surface enzyme treatments using laccase and a hydrophobic compound to paper-based media.
    Cusola O; Valls C; Vidal T; Roncero MB
    Bioresour Technol; 2013 Mar; 131():521-6. PubMed ID: 23453234
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New strategy for grafting hydrophobization of lignocellulosic fiber materials with octadecylamine using a laccase/TEMPO system.
    Dong A; Teklu KM; Wang W; Fan X; Wang Q; Ardanuy M; Dong Z
    Int J Biol Macromol; 2020 Oct; 160():192-200. PubMed ID: 32450328
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of the properties of cellulose nanocrystals and cellulose nanofibrils isolated from bacteria, tunicate, and wood processed using acid, enzymatic, mechanical, and oxidative methods.
    Sacui IA; Nieuwendaal RC; Burnett DJ; Stranick SJ; Jorfi M; Weder C; Foster EJ; Olsson RT; Gilman JW
    ACS Appl Mater Interfaces; 2014 May; 6(9):6127-38. PubMed ID: 24746103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real Time and Quantitative Imaging of Lignocellulosic Films Hydrolysis by Atomic Force Microscopy Reveals Lignin Recalcitrance at Nanoscale.
    Lambert E; Aguié-Béghin V; Dessaint D; Foulon L; Chabbert B; Paës G; Molinari M
    Biomacromolecules; 2019 Jan; 20(1):515-527. PubMed ID: 30532964
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.