These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 25164105)

  • 21. Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: a novel drug-carrier system for photodynamic therapy.
    Roy I; Ohulchanskyy TY; Pudavar HE; Bergey EJ; Oseroff AR; Morgan J; Dougherty TJ; Prasad PN
    J Am Chem Soc; 2003 Jul; 125(26):7860-5. PubMed ID: 12823004
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lab-on-a-chip systems for photodynamic therapy investigations.
    Chudy M; Tokarska K; Jastrzębska E; Bułka M; Drozdek S; Lamch Ł; Wilk KA; Brzózka Z
    Biosens Bioelectron; 2018 Mar; 101():37-51. PubMed ID: 29035761
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nanoparticles as vehicles for delivery of photodynamic therapy agents.
    Bechet D; Couleaud P; Frochot C; Viriot ML; Guillemin F; Barberi-Heyob M
    Trends Biotechnol; 2008 Nov; 26(11):612-21. PubMed ID: 18804298
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Polymeric nanoparticles for photodynamic therapy.
    Lee YE; Kopelman R
    Methods Mol Biol; 2011; 726():151-78. PubMed ID: 21424449
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dendrimer polymeric micelles for enhanced photodynamic cancer treatment.
    Park K
    J Control Release; 2009 Feb; 133(3):171. PubMed ID: 19103238
    [No Abstract]   [Full Text] [Related]  

  • 26. Liposomal photosensitizers: potential platforms for anticancer photodynamic therapy.
    Muehlmann LA; Joanitti GA; Silva JR; Longo JP; Azevedo RB
    Braz J Med Biol Res; 2011 Aug; 44(8):729-37. PubMed ID: 21969965
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nanomaterials for Deep Tumor Treatment.
    Kirsanova DY; Gadzhimagomedova ZM; Maksimov AY; Soldatov AV
    Mini Rev Med Chem; 2021; 21(6):677-688. PubMed ID: 33176645
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Basic principles, applications in oncology and improved selectivity of photodynamic therapy.
    Vrouenraets MB; Visser GW; Snow GB; van Dongen GA
    Anticancer Res; 2003; 23(1B):505-22. PubMed ID: 12680139
    [TBL] [Abstract][Full Text] [Related]  

  • 29. New photosensitizers for photodynamic therapy.
    Abrahamse H; Hamblin MR
    Biochem J; 2016 Feb; 473(4):347-64. PubMed ID: 26862179
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Calcium phosphosilicate nanoparticles for imaging and photodynamic therapy of cancer.
    Tacelosky DM; Creecy AE; Shanmugavelandy SS; Smith JP; Claxton DF; Adair JH; Kester M; Barth BM
    Discov Med; 2012 Apr; 13(71):275-85. PubMed ID: 22541615
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Squaraine dyes in PDT: from basic design to in vivo demonstration.
    Avirah RR; Jayaram DT; Adarsh N; Ramaiah D
    Org Biomol Chem; 2012 Feb; 10(5):911-20. PubMed ID: 22179414
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Future of oncologic photodynamic therapy.
    Allison RR; Bagnato VS; Sibata CH
    Future Oncol; 2010 Jun; 6(6):929-40. PubMed ID: 20528231
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Approaches to the targeted intracellular delivery of photosensitizers in order to enhance their efficacy and cell specificity].
    Sobolev AS; Rozenkrants AA; Giliazova DG
    Biofizika; 2004; 49(2):351-79. PubMed ID: 15129633
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Polymeric Nanoparticles for Cancer Photodynamic Therapy.
    Conte C; Maiolino S; Pellosi DS; Miro A; Ungaro F; Quaglia F
    Top Curr Chem; 2016; 370():61-112. PubMed ID: 26589506
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Layered bismuth oxyhalide nanomaterials for highly efficient tumor photodynamic therapy.
    Xu Y; Shi Z; Zhang L; Brown EM; Wu A
    Nanoscale; 2016 Jul; 8(25):12715-22. PubMed ID: 26287933
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Simple Peptide-Tuned Self-Assembly of Photosensitizers towards Anticancer Photodynamic Therapy.
    Liu K; Xing R; Zou Q; Ma G; Möhwald H; Yan X
    Angew Chem Int Ed Engl; 2016 Feb; 55(9):3036-9. PubMed ID: 26804551
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [History of photodynamic therapy--past, present and future].
    Kato H
    Gan To Kagaku Ryoho; 1996 Jan; 23(1):8-15. PubMed ID: 8546474
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Implications of Photophysical and Physicochemical Factors on Successful Application of Photodynamic Therapy.
    Paul S; Heng PWS; Chan LW
    Curr Pharm Des; 2017; 23(40):6194-6205. PubMed ID: 28270061
    [TBL] [Abstract][Full Text] [Related]  

  • 39. New directions in photodynamic therapy.
    Gudgin Dickson EF; Goyan RL; Pottier RH
    Cell Mol Biol (Noisy-le-grand); 2002 Dec; 48(8):939-54. PubMed ID: 12699254
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Silica-based nanoparticles for photodynamic therapy applications.
    Couleaud P; Morosini V; Frochot C; Richeter S; Raehm L; Durand JO
    Nanoscale; 2010 Jul; 2(7):1083-95. PubMed ID: 20648332
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.