These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 25164335)

  • 1. Investigation of the optimal percentage of green seaweed that may be co-digested with dairy slurry to produce gaseous biofuel.
    Allen E; Wall DM; Herrmann C; Murphy JD
    Bioresour Technol; 2014 Oct; 170():436-444. PubMed ID: 25164335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The potential of algae blooms to produce renewable gaseous fuel.
    Allen E; Browne J; Hynes S; Murphy JD
    Waste Manag; 2013 Nov; 33(11):2425-33. PubMed ID: 23850117
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anaerobic digestion of macroalgae: methane potentials, pre-treatment, inhibition and co-digestion.
    Nielsen HB; Heiske S
    Water Sci Technol; 2011; 64(8):1723-9. PubMed ID: 22335117
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Green energy from marine algae: biogas production and composition from the anaerobic digestion of Irish seaweed species.
    Vanegas CH; Bartlett J
    Environ Technol; 2013; 34(13-16):2277-83. PubMed ID: 24350482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sulphur fate and anaerobic biodegradation potential during co-digestion of seaweed biomass (Ulva sp.) with pig slurry.
    Peu P; Sassi JF; Girault R; Picard S; Saint-Cast P; Béline F; Dabert P
    Bioresour Technol; 2011 Dec; 102(23):10794-802. PubMed ID: 21982451
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methanosarcina Play an Important Role in Anaerobic Co-Digestion of the Seaweed Ulva lactuca: Taxonomy and Predicted Metabolism of Functional Microbial Communities.
    FitzGerald JA; Allen E; Wall DM; Jackson SA; Murphy JD; Dobson AD
    PLoS One; 2015; 10(11):e0142603. PubMed ID: 26555136
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biogas production generated through continuous digestion of natural and cultivated seaweeds with dairy slurry.
    Tabassum MR; Wall DM; Murphy JD
    Bioresour Technol; 2016 Nov; 219():228-238. PubMed ID: 27494104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biogas production from co-digestion of corn stover and chicken manure under anaerobic wet, hemi-solid, and solid state conditions.
    Li Y; Zhang R; Chen C; Liu G; He Y; Liu X
    Bioresour Technol; 2013 Dec; 149():406-12. PubMed ID: 24135565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioenergy potential of Ulva lactuca: biomass yield, methane production and combustion.
    Bruhn A; Dahl J; Nielsen HB; Nikolaisen L; Rasmussen MB; Markager S; Olesen B; Arias C; Jensen PD
    Bioresour Technol; 2011 Feb; 102(3):2595-604. PubMed ID: 21044839
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimised biogas production from microalgae through co-digestion with carbon-rich co-substrates.
    Herrmann C; Kalita N; Wall D; Xia A; Murphy JD
    Bioresour Technol; 2016 Aug; 214():328-337. PubMed ID: 27152773
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimisation of digester performance with increasing organic loading rate for mono- and co-digestion of grass silage and dairy slurry.
    Wall DM; Allen E; Straccialini B; O'Kiely P; Murphy JD
    Bioresour Technol; 2014 Dec; 173():422-428. PubMed ID: 25444886
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of batch anaerobic co-digestion of palm pressed fiber and cattle manure under mesophilic conditions.
    Bah H; Zhang W; Wu S; Qi D; Kizito S; Dong R
    Waste Manag; 2014 Nov; 34(11):1984-91. PubMed ID: 25148926
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of increasing the organic loading rate on the co-digestion and mono-digestion of cattle slurry and maize.
    Cornell M; Banks CJ; Heaven S
    Water Sci Technol; 2012; 66(11):2336-42. PubMed ID: 23032762
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparing the inhibitory thresholds of dairy manure co-digesters after prolonged acclimation periods: Part 1--Performance and operating limits.
    Usack JG; Angenent LT
    Water Res; 2015 Dec; 87():446-57. PubMed ID: 26054695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of anaerobic co-digestion of dairy manure with food wastes via bio-methane potential assay and CSTR reactor.
    Ye Y; Zamalloa C; Lin H; Yan M; Schmidt D; Hu B
    J Environ Sci Health B; 2015; 50(3):217-27. PubMed ID: 25602155
    [TBL] [Abstract][Full Text] [Related]  

  • 16.
    Dominguez H; Loret EP
    Mar Drugs; 2019 Jun; 17(6):. PubMed ID: 31207947
    [No Abstract]   [Full Text] [Related]  

  • 17. Optimization of the anaerobic co-digestion of pasteurized slaughterhouse waste, pig slurry and glycerine.
    Rodríguez-Abalde Á; Flotats X; Fernández B
    Waste Manag; 2017 Mar; 61():521-528. PubMed ID: 28024897
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of a gradually increased load of fish waste silage in co-digestion with cow manure on methane production.
    Solli L; Bergersen O; Sørheim R; Briseid T
    Waste Manag; 2014 Aug; 34(8):1553-9. PubMed ID: 24820663
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anaerobic digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp.
    Wang L; Li Y; Chen P; Min M; Chen Y; Zhu J; Ruan RR
    Bioresour Technol; 2010 Apr; 101(8):2623-8. PubMed ID: 19932957
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anaerobic digestion of the liquid fraction of dairy manure in pilot plant for biogas production: residual methane yield of digestate.
    Rico C; Rico JL; Tejero I; Muñoz N; Gómez B
    Waste Manag; 2011; 31(9-10):2167-73. PubMed ID: 21612905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.