These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 25164336)

  • 21. Process optimization and analysis of product inhibition kinetics of crude glycerol fermentation for 1,3-Dihydroxyacetone production.
    Dikshit PK; Padhi SK; Moholkar VS
    Bioresour Technol; 2017 Nov; 244(Pt 1):362-370. PubMed ID: 28780271
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optimization of 1,3-dihydroxyacetone production from crude glycerol by immobilized Gluconobacter oxydans MTCC 904.
    Dikshit PK; Moholkar VS
    Bioresour Technol; 2016 Sep; 216():1058-65. PubMed ID: 26873288
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Combined cross-linked enzyme aggregates of glycerol dehydrogenase and NADH oxidase for high efficiency in situ NAD
    Xu MQ; Li FL; Yu WQ; Li RF; Zhang YW
    Int J Biol Macromol; 2020 Feb; 144():1013-1021. PubMed ID: 31669469
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dihydroxyacetone production from glycerol using Gluconobacter oxydans: Study of medium composition and operational conditions in shaken flasks.
    de la Morena S; Acedos MG; Santos VE; García-Ochoa F
    Biotechnol Prog; 2019 Jul; 35(4):e2803. PubMed ID: 30840359
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dihydroxyacetone production via heterogeneous biotransformations of crude glycerol.
    Ripoll M; Jackson E; Trelles JA; Betancor L
    J Biotechnol; 2021 Nov; 340():102-109. PubMed ID: 34454960
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Progress in metabolic engineering of microbial production of 1,3-dihydroxyacetone].
    Sun L; Hu Z; Zheng Y; Shen Y
    Sheng Wu Gong Cheng Xue Bao; 2010 Sep; 26(9):1218-24. PubMed ID: 21141111
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analysis of glycerol and dihydroxyacetone metabolism in Enterococcus faecium.
    Staerck C; Wasselin V; Budin-Verneuil A; Rincé I; Cacaci M; Weigel M; Giraud C; Hain T; Hartke A; Riboulet-Bisson E
    FEMS Microbiol Lett; 2021 May; 368(8):. PubMed ID: 33864460
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Simultaneous CO
    Cocuzza C; Pietricola G; Zonca I; Dosa M; Romero O; Tommasi T; Cauda V; Fino D; Ottone C; Piumetti M
    RSC Adv; 2022 Oct; 12(48):31142-31155. PubMed ID: 36349027
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Simultaneous production of 1,3-dihydroxyacetone and xylitol from glycerol and xylose using a nanoparticle-supported multi-enzyme system with in situ cofactor regeneration.
    Zhang Y; Gao F; Zhang SP; Su ZG; Ma GH; Wang P
    Bioresour Technol; 2011 Jan; 102(2):1837-43. PubMed ID: 20947342
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Investigations in sonication-induced intensification of crude glycerol fermentation to dihydroxyacetone by free and immobilized Gluconobacter oxydans.
    Dikshit PK; Kharmawlong GJ; Moholkar VS
    Bioresour Technol; 2018 May; 256():302-311. PubMed ID: 29455098
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Promiscuous activity of (S,S)-butanediol dehydrogenase is responsible for glycerol production from 1,3-dihydroxyacetone in Corynebacterium glutamicum under oxygen-deprived conditions.
    Jojima T; Igari T; Moteki Y; Suda M; Yukawa H; Inui M
    Appl Microbiol Biotechnol; 2015 Feb; 99(3):1427-33. PubMed ID: 25363556
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Anaerobic growth of Escherichia coli on glycerol by importing genes of the dha regulon from Klebsiella pneumoniae.
    Sprenger GA; Hammer BA; Johnson EA; Lin EC
    J Gen Microbiol; 1989 May; 135(5):1255-62. PubMed ID: 2559947
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Low-cost biotransformation of glycerol to 1,3-dihydroxyacetone through Gluconobacter frateurii in medium with inorganic salts only.
    Poljungreed I; Boonyarattanakalin S
    Lett Appl Microbiol; 2018 Jul; 67(1):39-46. PubMed ID: 29574796
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Using concanavalinA as a spacer for immobilization of E. coli onto magnetic nanoparticles.
    Zhuang MY; Wang C; Xu MQ; Ling XM; Shen JJ; Zhang YW
    Int J Biol Macromol; 2017 Nov; 104(Pt A):63-69. PubMed ID: 28559183
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Use of a Gluconobacter frateurii mutant to prevent dihydroxyacetone accumulation during glyceric acid production from glycerol.
    Habe H; Shimada Y; Fukuoka T; Kitamoto D; Itagaki M; Watanabe K; Yanagishita H; Yakushi T; Matsushita K; Sakaki K
    Biosci Biotechnol Biochem; 2010; 74(11):2330-2. PubMed ID: 21071844
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metabolic engineering of Escherichia coli for the production of 1,2-propanediol from glycerol.
    Clomburg JM; Gonzalez R
    Biotechnol Bioeng; 2011 Apr; 108(4):867-79. PubMed ID: 21404260
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Immobilization and stabilization of xylanase by multipoint covalent attachment on agarose and on chitosan supports.
    Manrich A; Komesu A; Adriano WS; Tardioli PW; Giordano RL
    Appl Biochem Biotechnol; 2010 May; 161(1-8):455-67. PubMed ID: 20119636
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dihydroxyacetone production in an engineered Escherichia coli through expression of Corynebacterium glutamicum dihydroxyacetone phosphate dephosphorylase.
    Jain VK; Tear CJ; Lim CY
    Enzyme Microb Technol; 2016 May; 86():39-44. PubMed ID: 26992791
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Solid-phase chemical amination of a lipase from Bacillus thermocatenulatus to improve its stabilization via covalent immobilization on highly activated glyoxyl-agarose.
    Fernandez-Lorente G; Godoy CA; Mendes AA; Lopez-Gallego F; Grazu V; de Las Rivas B; Palomo JM; Hermoso J; Fernandez-Lafuente R; Guisan JM
    Biomacromolecules; 2008 Sep; 9(9):2553-61. PubMed ID: 18702542
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Conversion of Glycerol to Dihydroxyacetone by Immobilized Whole Cells of Acetobacter xylinum.
    Nabe K; Izuo N; Yamada S; Chibata I
    Appl Environ Microbiol; 1979 Dec; 38(6):1056-60. PubMed ID: 16345471
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.