BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 25164346)

  • 1. Comparison of complex effluent treatability in different bench scale microbial electrolysis cells.
    Ullery ML; Logan BE
    Bioresour Technol; 2014 Oct; 170():530-537. PubMed ID: 25164346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Treatability studies on different refinery wastewater samples using high-throughput microbial electrolysis cells (MECs).
    Ren L; Siegert M; Ivanov I; Pisciotta JM; Logan BE
    Bioresour Technol; 2013 May; 136():322-8. PubMed ID: 23567698
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of hydrogen from domestic wastewater in a pilot-scale microbial electrolysis cell.
    Heidrich ES; Dolfing J; Scott K; Edwards SR; Jones C; Curtis TP
    Appl Microbiol Biotechnol; 2013 Aug; 97(15):6979-89. PubMed ID: 23053105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance of a semi-pilot tubular microbial electrolysis cell (MEC) under several hydraulic retention times and applied voltages.
    Gil-Carrera L; Escapa A; Carracedo B; Morán A; Gómez X
    Bioresour Technol; 2013 Oct; 146():63-69. PubMed ID: 23911817
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Examination of protein degradation in continuous flow, microbial electrolysis cells treating fermentation wastewater.
    Nam JY; Yates MD; Zaybak Z; Logan BE
    Bioresour Technol; 2014 Nov; 171():182-6. PubMed ID: 25194912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduced energy consumption during low strength domestic wastewater treatment in a semi-pilot tubular microbial electrolysis cell.
    Gil-Carrera L; Escapa A; Moreno R; Morán A
    J Environ Manage; 2013 Jun; 122():1-7. PubMed ID: 23524371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A study of electron source preference and its impact on hydrogen production in microbial electrolysis cells fed with synthetic fermentation effluent.
    Choi Y; Kim D; Choi H; Cha J; Baek G; Lee C
    Bioengineered; 2023 Dec; 14(1):2244759. PubMed ID: 37598370
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Industrial-scale application of the plunger flow electro-oxidation reactor in wastewater depth treatment.
    Huang G; Yao J; Pan W; Wang J
    Environ Sci Pollut Res Int; 2016 Sep; 23(18):18288-95. PubMed ID: 27278066
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Treatment of oilfield wastewater by combined process of micro-electrolysis, Fenton oxidation and coagulation.
    Zhang Z
    Water Sci Technol; 2017 Dec; 76(11-12):3278-3288. PubMed ID: 29236007
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scaling-up of membraneless microbial electrolysis cells (MECs) for domestic wastewater treatment: Bottlenecks and limitations.
    Escapa A; San-Martín MI; Mateos R; Morán A
    Bioresour Technol; 2015 Mar; 180():72-8. PubMed ID: 25590425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogen and methane production from swine wastewater using microbial electrolysis cells.
    Wagner RC; Regan JM; Oh SE; Zuo Y; Logan BE
    Water Res; 2009 Mar; 43(5):1480-8. PubMed ID: 19138783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbial electrolysis cell scale-up for combined wastewater treatment and hydrogen production.
    Gil-Carrera L; Escapa A; Mehta P; Santoyo G; Guiot SR; Morán A; Tartakovsky B
    Bioresour Technol; 2013 Feb; 130():584-91. PubMed ID: 23334014
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal of organic carbon and nitrogen in a membraneless flow-through microbial electrolysis cell.
    Hussain A; Lebrun FM; Tartakovsky B
    Enzyme Microb Technol; 2017 Jul; 102():41-48. PubMed ID: 28465059
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Detoxification and Degradation of Benzothiazole from the Wastewater in Microbial Electrolysis Cells.
    Liu X; Ding J; Ren N; Tong Q; Zhang L
    Int J Environ Res Public Health; 2016 Dec; 13(12):. PubMed ID: 27999421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative study of exoelectrogenic utilization preferences and hydrogen conversion among major fermentation products in microbial electrolysis cells.
    Choi Y; Kim D; Choi H; Cha J; Baek G; Lee C
    Bioresour Technol; 2024 Feb; 393():130032. PubMed ID: 38013038
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pretreatment of printing and dyeing wastewater by Fe/C micro-electrolysis combined with H
    Wang Y; Wu X; Yi J; Chen L; Lan T; Dai J
    Water Sci Technol; 2018 Jul; 2017(3):707-717. PubMed ID: 30016288
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogen production and wastewater treatment in a microbial electrolysis cell with a biocathode.
    Xu Y; Jiang Y; Chen Y; Zhu S; Shen S
    Water Environ Res; 2014 Jul; 86(7):649-53. PubMed ID: 25112032
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of volatile fatty acids on microbial electrolysis cell performance.
    Yang N; Hafez H; Nakhla G
    Bioresour Technol; 2015 Oct; 193():449-55. PubMed ID: 26159302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient treatment of azo dye containing wastewater in a hybrid acidogenic bioreactor stimulated by biocatalyzed electrolysis.
    Wang HC; Cheng HY; Wang SS; Cui D; Han JL; Hu YP; Su SG; Wang AJ
    J Environ Sci (China); 2016 Jan; 39():198-207. PubMed ID: 26899658
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.