These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 25164353)

  • 1. Effects of temperature on simulated electrotonic potentials and their current kinetics of human motor axons at 20°C-42°C.
    Stephanova DI; Daskalova M
    J Integr Neurosci; 2014 Sep; 13(3):447-64. PubMed ID: 25164353
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrotonic potentials in simulated chronic inflammatory demyelinating polyneuropathy at 20°C-42°C.
    Stephanova DI; Daskalova M
    J Integr Neurosci; 2015 Jun; 14(2):235-52. PubMed ID: 25916252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical predication of temperature effects on accommodative processes in simulated amyotrophic lateral sclerosis during hypothermia and hyperthermia.
    Stephanova DI; Kossev A
    J Integr Neurosci; 2016 Dec; 15(4):553-569. PubMed ID: 28100104
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temperature effects on accommodative processes in simulated amyotrophic lateral sclerosis in the physiological range.
    Stephanova DI; Kossev A
    J Integr Neurosci; 2017; 16(3):319-333. PubMed ID: 28891518
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms defining the electrotonic potential abnormalities in simulated amyotrophic lateral sclerosis.
    Stephanova DI; Krustev SM; Negrev N
    J Integr Neurosci; 2012 Jun; 11(2):155-67. PubMed ID: 22744822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical predication of temperature effect on conducting processes in simulated amyotrophic lateral sclerosis at 20-40[Formula: see text]C.
    Stephanova DI; Kossev A
    J Integr Neurosci; 2016 Jun; 15(2):261-76. PubMed ID: 27389830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Channels, currents and mechanisms of accommodative processes in simulated cases of systematic demyelinating neuropathies.
    Stephanova DI; Daskalova M; Alexandrov AS
    Brain Res; 2007 Sep; 1171():138-51. PubMed ID: 17706617
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical predications of the effects of temperature on simulated adaptive processes in human motor nerve axons at 20°C-42°C.
    Stephanova DI; Daskalova M
    J Integr Neurosci; 2014 Sep; 13(3):529-43. PubMed ID: 25164362
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Different effects of blocked potassium channels on action potentials, accommodation, adaptation and anode break excitation in human motor and sensory myelinated nerve fibres: computer simulations.
    Stephanova DI; Mileva K
    Biol Cybern; 2000 Aug; 83(2):161-7. PubMed ID: 10966055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conducting processes in simulated chronic inflammatory demyelinating polyneuropathy at 20°C-42°C.
    Stephanova DI; Daskalova M; Mladenov M
    J Integr Neurosci; 2015 Mar; 14(1):19-30. PubMed ID: 25597276
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms defining the action potential abnormalities in simulated amyotrophic lateral sclerosis.
    Stephanova DI; Krustev SM; Negrev N
    J Integr Neurosci; 2012 Jun; 11(2):137-54. PubMed ID: 22744821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A distributed-parameter model of the myelinated human motor nerve fibre: temporal and spatial distributions of electrotonic potentials and ionic currents.
    Stephanova DI; Bostock H
    Biol Cybern; 1996 Jun; 74(6):543-7. PubMed ID: 8672561
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intracellular recording from vertebrate myelinated axons: mechanism of the depolarizing afterpotential.
    Barrett EF; Barrett JN
    J Physiol; 1982 Feb; 323():117-44. PubMed ID: 6980272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differences between the channels, currents and mechanisms of conduction slowing/block and accommodative processes in simulated cases of focal demyelinating neuropathies.
    Stephanova DI; Daskalova MS
    Eur Biophys J; 2008 Jul; 37(6):829-42. PubMed ID: 18286274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Internodal mechanism of pathological afterdischarges in myelinated axons.
    Dimitrov AG; Dimitrova NA
    Muscle Nerve; 2014 Jan; 49(1):47-55. PubMed ID: 23580322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differences in potentials and excitability properties in simulated cases of demyelinating neuropathies. Part III. Paranodal internodal demyelination.
    Stephanova DI; Daskalova M
    Clin Neurophysiol; 2005 Oct; 116(10):2334-41. PubMed ID: 16122981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A model of mouse motor nerve excitability and the effects of polarizing currents.
    Boërio D; Greensmith L; Bostock H
    J Peripher Nerv Syst; 2011 Dec; 16(4):322-33. PubMed ID: 22176147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the physiological role of internodal potassium channels and the security of conduction in myelinated nerve fibres.
    Chiu SY; Ritchie JM
    Proc R Soc Lond B Biol Sci; 1984 Feb; 220(1221):415-22. PubMed ID: 6142457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A distributed-parameter model of the myelinated human motor nerve fibre: temporal and spatial distributions of action potentials and ionic currents.
    Stephanova DI; Bostock H
    Biol Cybern; 1995 Aug; 73(3):275-80. PubMed ID: 7548315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Excitability properties of normal and demyelinated human motor nerve axons.
    Stephanova DI; Daskalova M
    Electromyogr Clin Neurophysiol; 2004; 44(3):147-52. PubMed ID: 15125054
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.