These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 25164389)

  • 1. Comparative proteomic analysis provides new insights into cadmium accumulation in rice grain under cadmium stress.
    Xue D; Jiang H; Deng X; Zhang X; Wang H; Xu X; Hu J; Zeng D; Guo L; Qian Q
    J Hazard Mater; 2014 Sep; 280():269-78. PubMed ID: 25164389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Disruption of secondary wall cellulose biosynthesis alters cadmium translocation and tolerance in rice plants.
    Song XQ; Liu LF; Jiang YJ; Zhang BC; Gao YP; Liu XL; Lin QS; Ling HQ; Zhou YH
    Mol Plant; 2013 May; 6(3):768-80. PubMed ID: 23376772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of OsLCT1, a cadmium transporter from indica rice (Oryza sativa).
    Uraguchi S; Kamiya T; Clemens S; Fujiwara T
    Physiol Plant; 2014 Jul; 151(3):339-47. PubMed ID: 24627964
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression in Arabidopsis and cellular localization reveal involvement of rice NRAMP, OsNRAMP1, in arsenic transport and tolerance.
    Tiwari M; Sharma D; Dwivedi S; Singh M; Tripathi RD; Trivedi PK
    Plant Cell Environ; 2014 Jan; 37(1):140-52. PubMed ID: 23700971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA microarray revealed and RNAi plants confirmed key genes conferring low Cd accumulation in barley grains.
    Sun H; Chen ZH; Chen F; Xie L; Zhang G; Vincze E; Wu F
    BMC Plant Biol; 2015 Oct; 15():259. PubMed ID: 26503017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of different N fertilizer forms on antioxidant capacity and grain yield of rice growing under Cd stress.
    Jalloh MA; Chen J; Zhen F; Zhang G
    J Hazard Mater; 2009 Mar; 162(2-3):1081-5. PubMed ID: 18603363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiological, genetic, and molecular characterization of a high-Cd-accumulating rice cultivar, Jarjan.
    Ueno D; Koyama E; Yamaji N; Ma JF
    J Exp Bot; 2011 Apr; 62(7):2265-72. PubMed ID: 21127026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rice breaks ground for cadmium-free cereals.
    Uraguchi S; Fujiwara T
    Curr Opin Plant Biol; 2013 Jun; 16(3):328-34. PubMed ID: 23587938
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression of sulfur uptake assimilation-related genes in response to cadmium, bensulfuron-methyl and their co-contamination in rice roots.
    Zhou J; Wang Z; Huang Z; Lu C; Han Z; Zhang J; Jiang H; Ge C; Yang J
    J Environ Sci (China); 2014 Mar; 26(3):650-61. PubMed ID: 25079279
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Suppressive effects of magnesium oxide materials on cadmium uptake and accumulation into rice grains II: Suppression of cadmium uptake and accumulation into rice grains due to application of magnesium oxide materials.
    Kikuchi T; Okazaki M; Kimura SD; Motobayashi T; Baasansuren J; Hattori T; Abe T
    J Hazard Mater; 2008 Jun; 154(1-3):294-9. PubMed ID: 18054161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genotypic and environmental variation in chromium, cadmium and lead concentrations in rice.
    Zeng F; Mao Y; Cheng W; Wu F; Zhang G
    Environ Pollut; 2008 May; 153(2):309-14. PubMed ID: 17905495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uptake and translocation of Cd in different rice cultivars and the relation with Cd accumulation in rice grain.
    Liu J; Qian M; Cai G; Yang J; Zhu Q
    J Hazard Mater; 2007 May; 143(1-2):443-7. PubMed ID: 17079078
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular identification and analysis of Cd-responsive microRNAs in rice.
    Ding Y; Qu A; Gong S; Huang S; Lv B; Zhu C
    J Agric Food Chem; 2013 Nov; 61(47):11668-75. PubMed ID: 23909695
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Excessive sulfur supply reduces cadmium accumulation in brown rice (Oryza sativa L.).
    Fan JL; Hu ZY; Ziadi N; Xia X; Wu CY
    Environ Pollut; 2010 Feb; 158(2):409-15. PubMed ID: 19781829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genotypic-dependent effects of N fertilizer, glutathione, silicon, zinc, and selenium on proteomic profiles, amino acid contents, and quality of rice genotypes with contrasting grain Cd accumulation.
    Cao F; Fu M; Wang R; Cheng W; Zhang G; Wu F
    Funct Integr Genomics; 2017 Jul; 17(4):387-397. PubMed ID: 27999965
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cadmium accumulation in and tolerance of rice (Oryza sativa L.) varieties with different rates of radial oxygen loss.
    Wang MY; Chen AK; Wong MH; Qiu RL; Cheng H; Ye ZH
    Environ Pollut; 2011 Jun; 159(6):1730-6. PubMed ID: 21411196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Binding of endogenous and exogenous cadmium to glutelin in rice grains as studied by HPLC/ICP-MS with use of a stable isotope.
    Suzuki KT; Sasakura C; Ohmichi M
    J Trace Elem Med Biol; 1997 Jun; 11(2):71-6. PubMed ID: 9285886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Different responses of low grain-Cd-accumulating and high grain-Cd-accumulating rice cultivars to Cd stress.
    Wang F; Wang M; Liu Z; Shi Y; Han T; Ye Y; Gong N; Sun J; Zhu C
    Plant Physiol Biochem; 2015 Nov; 96():261-9. PubMed ID: 26318143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heteroexpression of the wheat phytochelatin synthase gene (TaPCS1) in rice enhances cadmium sensitivity.
    Wang F; Wang Z; Zhu C
    Acta Biochim Biophys Sin (Shanghai); 2012 Oct; 44(10):886-93. PubMed ID: 23017837
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of silicon on the leaf proteome of rice (Oryza sativa L.) plants under cadmium-stress.
    Nwugo CC; Huerta AJ
    J Proteome Res; 2011 Feb; 10(2):518-28. PubMed ID: 21117708
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.