These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
100 related articles for article (PubMed ID: 25164482)
1. Theoretical insights into the reductive metabolism of CCl4 by cytochrome P450 enzymes and the CCl4-dependent suicidal inactivation of P450. Li XX; Zheng QC; Wang Y; Zhang HX Dalton Trans; 2014 Oct; 43(39):14833-40. PubMed ID: 25164482 [TBL] [Abstract][Full Text] [Related]
2. The mechanism of the suicidal, reductive inactivation of microsomal cytochrome P-450 by carbon tetrachloride. Manno M; De Matteis F; King LJ Biochem Pharmacol; 1988 May; 37(10):1981-90. PubMed ID: 3377806 [TBL] [Abstract][Full Text] [Related]
3. Metabolism of halogenated alkanes by cytochrome P450 enzymes. Aerobic oxidation versus anaerobic reduction. Ji L; Zhang J; Liu W; de Visser SP Chem Asian J; 2014 Apr; 9(4):1175-82. PubMed ID: 24501011 [TBL] [Abstract][Full Text] [Related]
4. Thiol oxidation and cytochrome P450-dependent metabolism of CCl4 triggers Ca2+ release from liver microsomes. Stoyanovsky DA; Cederbaum AI Biochemistry; 1996 Dec; 35(49):15839-45. PubMed ID: 8961948 [TBL] [Abstract][Full Text] [Related]
5. Reductive-oxygenation mechanism of metabolism of carbon tetrachloride to phosgene by cytochrome P-450. Pohl LR; Schulick RD; Highet RJ; George JW Mol Pharmacol; 1984 Mar; 25(2):318-21. PubMed ID: 6700577 [TBL] [Abstract][Full Text] [Related]
6. Suicidal inactivation of haemoproteins by reductive metabolites of halomethanes: a structure-activity relationship study. Manno M; Tolando R; Ferrara R; Rezzadore M; Cazzaro S Toxicology; 1995 Jun; 100(1-3):175-83. PubMed ID: 7624875 [TBL] [Abstract][Full Text] [Related]
7. Mechanisms and products of surface-mediated reductive dehalogenation of carbon tetrachloride by Fe(II) on goethite. Elsner M; Haderlein SB; Kellerhals T; Luzi S; Zwank L; Angst W; Schwarzenbach RP Environ Sci Technol; 2004 Apr; 38(7):2058-66. PubMed ID: 15112807 [TBL] [Abstract][Full Text] [Related]
8. Reductive activation of HCFC-123 by methaemalbumin. Zanovello A; Ferrara R; Manno M Toxicol Lett; 2003 Sep; 144(1):127-36. PubMed ID: 12919730 [TBL] [Abstract][Full Text] [Related]
9. Preventive effect of isoflurane on destruction of cytochrome P450 during reductive dehalogenation of carbon tetrachloride in guinea-pig liver microsomes. Fujii K Drug Metabol Drug Interact; 1997; 14(2):99-107. PubMed ID: 9893740 [TBL] [Abstract][Full Text] [Related]
10. Covalent binding of carbon tetrachloride metabolites to the heme moiety of cytochrome P-450 and its degradation products. Fernández G; Villarruel MC; de Toranzo EG; Castro JA Res Commun Chem Pathol Pharmacol; 1982 Feb; 35(2):283-90. PubMed ID: 7071415 [TBL] [Abstract][Full Text] [Related]
11. Cytochrome P-450-dependent formation of reactive oxygen radicals: isozyme-specific inhibition of P-450-mediated reduction of oxygen and carbon tetrachloride. Persson JO; Terelius Y; Ingelman-Sundberg M Xenobiotica; 1990 Sep; 20(9):887-900. PubMed ID: 2122605 [TBL] [Abstract][Full Text] [Related]
12. The reductive metabolism of halogenated alkanes by liver microsomal cytochrome P450. Nastainczyk W; Ahr HJ; Ullrich V Biochem Pharmacol; 1982 Feb; 31(3):391-6. PubMed ID: 7073766 [TBL] [Abstract][Full Text] [Related]
13. A proton-shuttle mechanism mediated by the porphyrin in benzene hydroxylation by cytochrome p450 enzymes. de Visser SP; Shaik S J Am Chem Soc; 2003 Jun; 125(24):7413-24. PubMed ID: 12797816 [TBL] [Abstract][Full Text] [Related]
14. Kupffer cell stimulation with Corynebacterium parvum reduces some cytochrome P450-dependent activities and diminishes acetaminophen and carbon tetrachloride-induced liver injury in the rat. Raiford DS; Thigpen MC Toxicol Appl Pharmacol; 1994 Nov; 129(1):36-45. PubMed ID: 7974494 [TBL] [Abstract][Full Text] [Related]
15. High-temperature electrocatalysis using thermophilic P450 CYP119: dehalogenation of CCl4 to CH4. Blair E; Greaves J; Farmer PJ J Am Chem Soc; 2004 Jul; 126(28):8632-3. PubMed ID: 15250698 [TBL] [Abstract][Full Text] [Related]
16. Mechanism of cytochrome P450 2D6-catalyzed sparteine metabolism in humans. Ebner T; Meese CO; Eichelbaum M Mol Pharmacol; 1995 Dec; 48(6):1078-86. PubMed ID: 8848008 [TBL] [Abstract][Full Text] [Related]
17. Cytochrome P450 inactivation during reductive metabolism of 1,1-dichloro-2,2,2-trifluoroethane (HCFC-123) by phenobarbital- and pyridine-induced rat liver microsomes. Ferrara R; Tolando R; King LJ; Manno M Toxicol Appl Pharmacol; 1997 Apr; 143(2):420-8. PubMed ID: 9144458 [TBL] [Abstract][Full Text] [Related]
18. Studies on the mechanism of the protective action of 16,16-dimethylPGE2 in carbon tetrachloride induced acute hepatic injury in the rat. Rush B; Merritt MV; Kaluzny M; Van Schoick T; Brunden MN; Ruwart M Prostaglandins; 1986 Sep; 32(3):439-55. PubMed ID: 3786805 [TBL] [Abstract][Full Text] [Related]
19. Inactivation and degradation of human cytochrome P4502E1 by CCl4 in a transfected HepG2 cell line. Dai Y; Cederbaum AI J Pharmacol Exp Ther; 1995 Dec; 275(3):1614-22. PubMed ID: 8531136 [TBL] [Abstract][Full Text] [Related]
20. The degradation of haem by carbon tetrachloride: metabolic activation requires a free axial coordination site on the haem iron and electron donation. Manno M; King LJ; De Matteis F Xenobiotica; 1989 Sep; 19(9):1023-35. PubMed ID: 2510407 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]