BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

481 related articles for article (PubMed ID: 25164754)

  • 1. Neural constraints on learning.
    Sadtler PT; Quick KM; Golub MD; Chase SM; Ryu SI; Tyler-Kabara EC; Yu BM; Batista AP
    Nature; 2014 Aug; 512(7515):423-6. PubMed ID: 25164754
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Learning by neural reassociation.
    Golub MD; Sadtler PT; Oby ER; Quick KM; Ryu SI; Tyler-Kabara EC; Batista AP; Chase SM; Yu BM
    Nat Neurosci; 2018 Apr; 21(4):607-616. PubMed ID: 29531364
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New neural activity patterns emerge with long-term learning.
    Oby ER; Golub MD; Hennig JA; Degenhart AD; Tyler-Kabara EC; Yu BM; Chase SM; Batista AP
    Proc Natl Acad Sci U S A; 2019 Jul; 116(30):15210-15215. PubMed ID: 31182595
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Constraints on neural redundancy.
    Hennig JA; Golub MD; Lund PJ; Sadtler PT; Oby ER; Quick KM; Ryu SI; Tyler-Kabara EC; Batista AP; Yu BM; Chase SM
    Elife; 2018 Aug; 7():. PubMed ID: 30109848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Emergence of Coordinated Neural Dynamics Underlies Neuroprosthetic Learning and Skillful Control.
    Athalye VR; Ganguly K; Costa RM; Carmena JM
    Neuron; 2017 Feb; 93(4):955-970.e5. PubMed ID: 28190641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinct types of neural reorganization during long-term learning.
    Zhou X; Tien RN; Ravikumar S; Chase SM
    J Neurophysiol; 2019 Apr; 121(4):1329-1341. PubMed ID: 30726164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Perturbing low dimensional activity manifolds in spiking neuronal networks.
    Wärnberg E; Kumar A
    PLoS Comput Biol; 2019 May; 15(5):e1007074. PubMed ID: 31150376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural manifold under plasticity in a goal driven learning behaviour.
    Feulner B; Clopath C
    PLoS Comput Biol; 2021 Feb; 17(2):e1008621. PubMed ID: 33544700
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional network reorganization during learning in a brain-computer interface paradigm.
    Jarosiewicz B; Chase SM; Fraser GW; Velliste M; Kass RE; Schwartz AB
    Proc Natl Acad Sci U S A; 2008 Dec; 105(49):19486-91. PubMed ID: 19047633
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing changes in neural interaction during adaptation.
    Zhu L; Lai YC; Hoppensteadt FC; He J
    Neural Comput; 2003 Oct; 15(10):2359-77. PubMed ID: 14511525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Point-and-click cursor control with an intracortical neural interface system by humans with tetraplegia.
    Kim SP; Simeral JD; Hochberg LR; Donoghue JP; Friehs GM; Black MJ
    IEEE Trans Neural Syst Rehabil Eng; 2011 Apr; 19(2):193-203. PubMed ID: 21278024
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decoding trajectories from posterior parietal cortex ensembles.
    Mulliken GH; Musallam S; Andersen RA
    J Neurosci; 2008 Nov; 28(48):12913-26. PubMed ID: 19036985
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A motor learning strategy reflects neural circuitry for limb control.
    Singh K; Scott SH
    Nat Neurosci; 2003 Apr; 6(4):399-403. PubMed ID: 12627165
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparatory activity in motor cortex reflects learning of local visuomotor skills.
    Paz R; Boraud T; Natan C; Bergman H; Vaadia E
    Nat Neurosci; 2003 Aug; 6(8):882-90. PubMed ID: 12872127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid acquisition of novel interface control by small ensembles of arbitrarily selected primary motor cortex neurons.
    Law AJ; Rivlis G; Schieber MH
    J Neurophysiol; 2014 Sep; 112(6):1528-48. PubMed ID: 24920030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cortical preparatory activity indexes learned motor memories.
    Sun X; O'Shea DJ; Golub MD; Trautmann EM; Vyas S; Ryu SI; Shenoy KV
    Nature; 2022 Feb; 602(7896):274-279. PubMed ID: 35082444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intrinsic Variable Learning for Brain-Machine Interface Control by Human Anterior Intraparietal Cortex.
    Sakellaridi S; Christopoulos VN; Aflalo T; Pejsa KW; Rosario ER; Ouellette D; Pouratian N; Andersen RA
    Neuron; 2019 May; 102(3):694-705.e3. PubMed ID: 30853300
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Timescales of Local and Cross-Area Interactions during Neuroprosthetic Learning.
    Derosier K; Veuthey TL; Ganguly K
    J Neurosci; 2021 Dec; 41(49):10120-10129. PubMed ID: 34732522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stabilization of a brain-computer interface via the alignment of low-dimensional spaces of neural activity.
    Degenhart AD; Bishop WE; Oby ER; Tyler-Kabara EC; Chase SM; Batista AP; Yu BM
    Nat Biomed Eng; 2020 Jul; 4(7):672-685. PubMed ID: 32313100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-reorganization of neuronal activation patterns in the cortex under brain-machine interface and neural operant conditioning.
    Ito H; Fujiki S; Mori Y; Kansaku K
    Neurosci Res; 2020 Jul; 156():279-292. PubMed ID: 32243900
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.