These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 25164770)

  • 1. Sustainable electrical energy storage through the ferrocene/ferrocenium redox reaction in aprotic electrolyte.
    Zhao Y; Ding Y; Song J; Li G; Dong G; Goodenough JB; Yu G
    Angew Chem Int Ed Engl; 2014 Oct; 53(41):11036-40. PubMed ID: 25164770
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aqueous cathode for next-generation alkali-ion batteries.
    Lu Y; Goodenough JB; Kim Y
    J Am Chem Soc; 2011 Apr; 133(15):5756-9. PubMed ID: 21443190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Bio-Inspired, Heavy-Metal-Free, Dual-Electrolyte Liquid Battery towards Sustainable Energy Storage.
    Ding Y; Yu G
    Angew Chem Int Ed Engl; 2016 Apr; 55(15):4772-6. PubMed ID: 26958787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Membrane-Free Ferrocene-Based High-Rate Semiliquid Battery.
    Ding Y; Zhao Y; Yu G
    Nano Lett; 2015 Jun; 15(6):4108-13. PubMed ID: 25942365
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Environmentally-friendly aqueous Li (or Na)-ion battery with fast electrode kinetics and super-long life.
    Dong X; Chen L; Liu J; Haller S; Wang Y; Xia Y
    Sci Adv; 2016 Jan; 2(1):e1501038. PubMed ID: 26844298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution of strategies for modern rechargeable batteries.
    Goodenough JB
    Acc Chem Res; 2013 May; 46(5):1053-61. PubMed ID: 22746097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Practical Aqueous Calcium-Ion Battery Full-Cells for Future Stationary Storage.
    Adil M; Sarkar A; Roy A; Panda MR; Nagendra A; Mitra S
    ACS Appl Mater Interfaces; 2020 Mar; 12(10):11489-11503. PubMed ID: 32073827
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Challenges and prospects of lithium-sulfur batteries.
    Manthiram A; Fu Y; Su YS
    Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials.
    Janoschka T; Martin N; Martin U; Friebe C; Morgenstern S; Hiller H; Hager MD; Schubert US
    Nature; 2015 Nov; 527(7576):78-81. PubMed ID: 26503039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How To Improve Capacity and Cycling Stability for Next Generation Li-O2 Batteries: Approach with a Solid Electrolyte and Elevated Redox Mediator Concentrations.
    Bergner BJ; Busche MR; Pinedo R; Berkes BB; Schröder D; Janek J
    ACS Appl Mater Interfaces; 2016 Mar; 8(12):7756-65. PubMed ID: 26942895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Secondary batteries with multivalent ions for energy storage.
    Xu C; Chen Y; Shi S; Li J; Kang F; Su D
    Sci Rep; 2015 Sep; 5():14120. PubMed ID: 26365600
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energetic aqueous rechargeable sodium-ion battery based on Na2 CuFe(CN)6 -NaTi2 (PO4 )3 intercalation chemistry.
    Wu XY; Sun MY; Shen YF; Qian JF; Cao YL; Ai XP; Yang HX
    ChemSusChem; 2014 Feb; 7(2):407-11. PubMed ID: 24464957
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new high-energy cathode for a Na-ion battery with ultrahigh stability.
    Park YU; Seo DH; Kwon HS; Kim B; Kim J; Kim H; Kim I; Yoo HI; Kang K
    J Am Chem Soc; 2013 Sep; 135(37):13870-8. PubMed ID: 23952799
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-Cycling Aqueous Organic Redox Flow Battery (AORFB) toward Sustainable and Safe Energy Storage.
    Hu B; DeBruler C; Rhodes Z; Liu TL
    J Am Chem Soc; 2017 Jan; 139(3):1207-1214. PubMed ID: 27973765
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Poly(2,5-dimercapto-1,3,4-thiadiazole) as a cathode for rechargeable lithium batteries with dramatically improved performance.
    Gao J; Lowe MA; Conte S; Burkhardt SE; Abruña HD
    Chemistry; 2012 Jul; 18(27):8521-6. PubMed ID: 22644940
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Full open-framework batteries for stationary energy storage.
    Pasta M; Wessells CD; Liu N; Nelson J; McDowell MT; Huggins RA; Toney MF; Cui Y
    Nat Commun; 2014; 5():3007. PubMed ID: 24389854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nickel-hydrogen batteries for large-scale energy storage.
    Chen W; Jin Y; Zhao J; Liu N; Cui Y
    Proc Natl Acad Sci U S A; 2018 Nov; 115(46):11694-11699. PubMed ID: 30373834
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Physical Organic Chemistry Approach to Developing Cyclopropenium-Based Energy Storage Materials for Redox Flow Batteries.
    Walser-Kuntz R; Yan Y; Sigman M; Sanford MS
    Acc Chem Res; 2023 May; 56(10):1239-1250. PubMed ID: 37094181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A chemistry and material perspective on lithium redox flow batteries towards high-density electrical energy storage.
    Zhao Y; Ding Y; Li Y; Peng L; Byon HR; Goodenough JB; Yu G
    Chem Soc Rev; 2015 Nov; 44(22):7968-96. PubMed ID: 26265165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.