BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 25165004)

  • 1. Minimal detection of nuclear mutations in XP-V and normal cells treated with oxidative stress inducing agents.
    Herman KN; Toffton S; McCulloch SD
    J Biochem Mol Toxicol; 2014 Dec; 28(12):568-77. PubMed ID: 25165004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo bypass of 8-oxodG.
    Rodriguez GP; Song JB; Crouse GF
    PLoS Genet; 2013; 9(8):e1003682. PubMed ID: 23935538
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Translesion synthesis of 7,8-dihydro-8-oxo-2'-deoxyguanosine by DNA polymerase eta in vivo.
    Lee DH; Pfeifer GP
    Mutat Res; 2008 May; 641(1-2):19-26. PubMed ID: 18359049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Roles of Residues Arg-61 and Gln-38 of Human DNA Polymerase η in Bypass of Deoxyguanosine and 7,8-Dihydro-8-oxo-2'-deoxyguanosine.
    Su Y; Patra A; Harp JM; Egli M; Guengerich FP
    J Biol Chem; 2015 Jun; 290(26):15921-33. PubMed ID: 25947374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The DNA polymerase gamma Y955C disease variant associated with PEO and parkinsonism mediates the incorporation and translesion synthesis opposite 7,8-dihydro-8-oxo-2'-deoxyguanosine.
    Graziewicz MA; Bienstock RJ; Copeland WC
    Hum Mol Genet; 2007 Nov; 16(22):2729-39. PubMed ID: 17725985
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of DNA replication fork progression and mutagenic potential of 1, N6-ethenoadenine and 8-oxoguanine in human cell extracts.
    Tolentino JH; Burke TJ; Mukhopadhyay S; McGregor WG; Basu AK
    Nucleic Acids Res; 2008 Mar; 36(4):1300-8. PubMed ID: 18184697
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutagenic potential of 8-oxo-7,8-dihydro-2'-deoxyguanosine bypass catalyzed by human Y-family DNA polymerases.
    Taggart DJ; Fredrickson SW; Gadkari VV; Suo Z
    Chem Res Toxicol; 2014 May; 27(5):931-40. PubMed ID: 24779885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic analysis of bypass of 7,8-dihydro-8-oxo-2'-deoxyguanosine by the catalytic core of yeast DNA polymerase η.
    Xue Q; Zhong M; Liu B; Tang Y; Wei Z; Guengerich FP; Zhang H
    Biochimie; 2016 Feb; 121():161-9. PubMed ID: 26700143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PCNA monoubiquitylation and DNA polymerase eta ubiquitin-binding domain are required to prevent 8-oxoguanine-induced mutagenesis in Saccharomyces cerevisiae.
    van der Kemp PA; de Padula M; Burguiere-Slezak G; Ulrich HD; Boiteux S
    Nucleic Acids Res; 2009 May; 37(8):2549-59. PubMed ID: 19264809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Repair of 8-oxoG is slower in endogenous nuclear genes than in mitochondrial DNA and is without strand bias.
    Thorslund T; Sunesen M; Bohr VA; Stevnsner T
    DNA Repair (Amst); 2002 Apr; 1(4):261-73. PubMed ID: 12509245
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural and functional elucidation of the mechanism promoting error-prone synthesis by human DNA polymerase kappa opposite the 7,8-dihydro-8-oxo-2'-deoxyguanosine adduct.
    Irimia A; Eoff RL; Guengerich FP; Egli M
    J Biol Chem; 2009 Aug; 284(33):22467-22480. PubMed ID: 19542228
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biochemical analysis of active site mutations of human polymerase η.
    Suarez SC; Beardslee RA; Toffton SM; McCulloch SD
    Mutat Res; 2013; 745-746():46-54. PubMed ID: 23499771
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sirt3 protects mitochondrial DNA damage and blocks the development of doxorubicin-induced cardiomyopathy in mice.
    Pillai VB; Bindu S; Sharp W; Fang YH; Kim G; Gupta M; Samant S; Gupta MP
    Am J Physiol Heart Circ Physiol; 2016 Apr; 310(8):H962-72. PubMed ID: 26873966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics, structure, and mechanism of 8-Oxo-7,8-dihydro-2'-deoxyguanosine bypass by human DNA polymerase η.
    Patra A; Nagy LD; Zhang Q; Su Y; Müller L; Guengerich FP; Egli M
    J Biol Chem; 2014 Jun; 289(24):16867-82. PubMed ID: 24759104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of efficient and accurate nucleotide incorporation opposite 7,8-dihydro-8-oxoguanine by Saccharomyces cerevisiae DNA polymerase eta.
    Carlson KD; Washington MT
    Mol Cell Biol; 2005 Mar; 25(6):2169-76. PubMed ID: 15743815
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two distinct pathways of cell death triggered by oxidative damage to nuclear and mitochondrial DNAs.
    Oka S; Ohno M; Tsuchimoto D; Sakumi K; Furuichi M; Nakabeppu Y
    EMBO J; 2008 Jan; 27(2):421-32. PubMed ID: 18188152
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of oxidative DNA damage repair: the adenine:8-oxo-guanine problem.
    Markkanen E; Hübscher U; van Loon B
    Cell Cycle; 2012 Mar; 11(6):1070-5. PubMed ID: 22370481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidative DNA damage and its repair in rat spleen following subchronic exposure to aniline.
    Ma H; Wang J; Abdel-Rahman SZ; Boor PJ; Khan MF
    Toxicol Appl Pharmacol; 2008 Dec; 233(2):247-53. PubMed ID: 18793663
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genistein alleviates the mitochondria-targeted DNA damage induced by β-amyloid peptides 25-35 in C6 glioma cells.
    Ma WW; Hou CC; Zhou X; Yu HL; Xi YD; Ding J; Zhao X; Xiao R
    Neurochem Res; 2013 Jul; 38(7):1315-23. PubMed ID: 23519932
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 8-oxoguanine and 8-oxodeoxyguanosine Biomarkers of Oxidative DNA Damage: A Review on HPLC-ECD Determination.
    Chiorcea-Paquim AM
    Molecules; 2022 Mar; 27(5):. PubMed ID: 35268721
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.