BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 25165047)

  • 1. Virchow-Robin space and aquaporin-4: new insights on an old friend.
    Nakada T
    Croat Med J; 2014 Aug; 55(4):328-36. PubMed ID: 25165047
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluid Dynamics Inside the Brain Barrier: Current Concept of Interstitial Flow, Glymphatic Flow, and Cerebrospinal Fluid Circulation in the Brain.
    Nakada T; Kwee IL
    Neuroscientist; 2019 Apr; 25(2):155-166. PubMed ID: 29799313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aquaporin-4 Functionality and Virchow-Robin Space Water Dynamics: Physiological Model for Neurovascular Coupling and Glymphatic Flow.
    Nakada T; Kwee IL; Igarashi H; Suzuki Y
    Int J Mol Sci; 2017 Aug; 18(8):. PubMed ID: 28820467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Water influx into cerebrospinal fluid is primarily controlled by aquaporin-4, not by aquaporin-1: 17O JJVCPE MRI study in knockout mice.
    Igarashi H; Tsujita M; Kwee IL; Nakada T
    Neuroreport; 2014 Jan; 25(1):39-43. PubMed ID: 24231830
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Water influx into cerebrospinal fluid is significantly reduced in senile plaque bearing transgenic mice, supporting beta-amyloid clearance hypothesis of Alzheimer's disease.
    Igarashi H; Suzuki Y; Kwee IL; Nakada T
    Neurol Res; 2014 Dec; 36(12):1094-8. PubMed ID: 25082552
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aquaporin-4 facilitator TGN-073 promotes interstitial fluid circulation within the blood-brain barrier: [17O]H2O JJVCPE MRI study.
    Huber VJ; Igarashi H; Ueki S; Kwee IL; Nakada T
    Neuroreport; 2018 Jun; 29(9):697-703. PubMed ID: 29481527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new look at cerebrospinal fluid circulation.
    Brinker T; Stopa E; Morrison J; Klinge P
    Fluids Barriers CNS; 2014; 11():10. PubMed ID: 24817998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Molecular Mechanisms of Neural Flow Coupling: A New Concept.
    Nakada T
    J Neuroimaging; 2015; 25(6):861-5. PubMed ID: 25704766
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β.
    Iliff JJ; Wang M; Liao Y; Plogg BA; Peng W; Gundersen GA; Benveniste H; Vates GE; Deane R; Goldman SA; Nagelhus EA; Nedergaard M
    Sci Transl Med; 2012 Aug; 4(147):147ra111. PubMed ID: 22896675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Clinical relevance of normal and enlarged Virchow-Robin spaces].
    Gess B; Niederstadt TU; Ringelstein EB; Schäbitz WR
    Nervenarzt; 2010 Jun; 81(6):727-33. PubMed ID: 20386872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The cerebrospinal fluid and barriers - anatomic and physiologic considerations.
    Tumani H; Huss A; Bachhuber F
    Handb Clin Neurol; 2017; 146():21-32. PubMed ID: 29110772
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring the Virchow-Robin spaces function: A unified theory of brain diseases.
    Cherian I; Beltran M; Kasper EM; Bhattarai B; Munokami S; Grasso G
    Surg Neurol Int; 2016; 7(Suppl 26):S711-S714. PubMed ID: 27857861
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [The glymphatic system: concept, function and research progresses].
    Wang LH; Wang ZL; Chen WY; Chen MJ; Xu GY
    Sheng Li Xue Bao; 2018 Feb; 70(1):52-60. PubMed ID: 29492515
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glymphatic distribution of CSF-derived apoE into brain is isoform specific and suppressed during sleep deprivation.
    Achariyar TM; Li B; Peng W; Verghese PB; Shi Y; McConnell E; Benraiss A; Kasper T; Song W; Takano T; Holtzman DM; Nedergaard M; Deane R
    Mol Neurodegener; 2016 Dec; 11(1):74. PubMed ID: 27931262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cerebrospinal fluid circulation and associated intracranial dynamics. A radiologic investigation using MR imaging and radionuclide cisternography.
    Greitz D
    Acta Radiol Suppl; 1993; 386():1-23. PubMed ID: 8517189
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Melatonin in ventricular and subarachnoid cerebrospinal fluid: Its function in the neural glymphatic network and biological significance for neurocognitive health.
    Reiter RJ; Sharma R; Rosales-Corral S; de Mange J; Phillips WT; Tan DX; Bitar RD
    Biochem Biophys Res Commun; 2022 May; 605():70-81. PubMed ID: 35316766
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions of brain, blood, and CSF: a novel mathematical model of cerebral edema.
    Doron O; Zadka Y; Barnea O; Rosenthal G
    Fluids Barriers CNS; 2021 Sep; 18(1):42. PubMed ID: 34530863
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeted Assessment of Enlargement of the Perivascular Space in Alzheimer's Disease and Vascular Dementia Subtypes Implicates Astroglial Involvement Specific to Alzheimer's Disease.
    Boespflug EL; Simon MJ; Leonard E; Grafe M; Woltjer R; Silbert LC; Kaye JA; Iliff JJ
    J Alzheimers Dis; 2018; 66(4):1587-1597. PubMed ID: 30475760
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Loss of aquaporin-4 results in glymphatic system dysfunction via brain-wide interstitial fluid stagnation.
    Gomolka RS; Hablitz LM; Mestre H; Giannetto M; Du T; Hauglund NL; Xie L; Peng W; Martinez PM; Nedergaard M; Mori Y
    Elife; 2023 Feb; 12():. PubMed ID: 36757363
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vascular basement membranes as pathways for the passage of fluid into and out of the brain.
    Morris AW; Sharp MM; Albargothy NJ; Fernandes R; Hawkes CA; Verma A; Weller RO; Carare RO
    Acta Neuropathol; 2016 May; 131(5):725-36. PubMed ID: 26975356
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.