These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 25165126)

  • 21. Regulation of rpoS gene expression in Pseudomonas: involvement of a TetR family regulator.
    Kojic M; Venturi V
    J Bacteriol; 2001 Jun; 183(12):3712-20. PubMed ID: 11371535
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regulation of the aprX-lipA operon of Pseudomonas fluorescens B52: differential regulation of the proximal and distal genes, encoding protease and lipase, by ompR-envZ.
    McCarthy CN; Woods RG; Beacham IR
    FEMS Microbiol Lett; 2004 Dec; 241(2):243-8. PubMed ID: 15598539
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Role of the stress sigma factor RpoS in GacA/RsmA-controlled secondary metabolism and resistance to oxidative stress in Pseudomonas fluorescens CHA0.
    Heeb S; Valverde C; Gigot-Bonnefoy C; Haas D
    FEMS Microbiol Lett; 2005 Feb; 243(1):251-8. PubMed ID: 15668026
    [TBL] [Abstract][Full Text] [Related]  

  • 24. hrpL activates Erwinia amylovora hrp gene transcription and is a member of the ECF subfamily of sigma factors.
    Wei ZM; Beer SV
    J Bacteriol; 1995 Nov; 177(21):6201-10. PubMed ID: 7592386
    [TBL] [Abstract][Full Text] [Related]  

  • 25. SigCH, an extracytoplasmic function sigma factor of Porphyromonas gingivalis regulates the expression of cdhR and hmuYR.
    Ota K; Kikuchi Y; Imamura K; Kita D; Yoshikawa K; Saito A; Ishihara K
    Anaerobe; 2017 Feb; 43():82-90. PubMed ID: 27940243
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The aprX-lipA operon of Pseudomonas fluorescens B52: a molecular analysis of metalloprotease and lipase production.
    Woods RG; Burger M; Beven CA; Beacham IR
    Microbiology (Reading); 2001 Feb; 147(Pt 2):345-354. PubMed ID: 11158351
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of the biocontrol activity of pseudomonas fluorescens strain X reveals novel genes regulated by glucose.
    Kremmydas GF; Tampakaki AP; Georgakopoulos DG
    PLoS One; 2013; 8(4):e61808. PubMed ID: 23596526
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Most
    Lang C; Barnett MJ; Fisher RF; Smith LS; Diodati ME; Long SR
    mSphere; 2018 Oct; 3(5):. PubMed ID: 30305320
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Detection of 4-formylaminooxyvinylglycine in culture filtrates of Pseudomonas fluorescens WH6 and Pantoea ananatis BRT175 by laser ablation electrospray ionization-mass spectrometry.
    Okrent RA; Trippe KM; Manning VA; Walsh CM
    PLoS One; 2018; 13(7):e0200481. PubMed ID: 29990341
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparative genome analysis of the vineyard weed endophyte Pseudomonas viridiflava CDRTc14 showing selective herbicidal activity.
    Samad A; Antonielli L; Sessitsch A; Compant S; Trognitz F
    Sci Rep; 2017 Dec; 7(1):17336. PubMed ID: 29229911
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Carbon limitation induces sigma(S)-dependent gene expression in Pseudomonas fluorescens in soil.
    Koch B; Worm J; Jensen LE; Højberg O; Nybroe O
    Appl Environ Microbiol; 2001 Aug; 67(8):3363-70. PubMed ID: 11472905
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regulation of the iron uptake genes in Pseudomonas fluorescens M114 by pseudobactin M114: the pbrA sigma factor gene does not mediate the siderophore regulatory response.
    Callanan M; Sexton R; Dowling DN; O'Gara F
    FEMS Microbiol Lett; 1996 Oct; 144(1):61-6. PubMed ID: 8870253
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Discovery of new regulatory genes of lipopeptide biosynthesis in Pseudomonas fluorescens.
    Song C; Aundy K; van de Mortel J; Raaijmakers JM
    FEMS Microbiol Lett; 2014 Jul; 356(2):166-75. PubMed ID: 25202778
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of the bacteriocins and the PrtR regulator in a plant-associated Pseudomonas strain.
    Fernandez M; Godino A; Príncipe A; López Ramírez V; Quesada JM; Rigo V; Espinosa-Urgel M; Morales GM; Fischer S
    J Biotechnol; 2020 Jan; 307():182-192. PubMed ID: 31697976
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Absence of 4-Formylaminooxyvinylglycine Production by
    Manning VA; Trippe KM
    Microorganisms; 2021 Mar; 9(4):. PubMed ID: 33807194
    [No Abstract]   [Full Text] [Related]  

  • 36. [Gene cloning of rpoD and its impact on biosynthesis of antibiotics in Fluorescent pseudomonas M18].
    Zhu D; Xu W; Geng H; Zhang X; Xu Y
    Wei Sheng Wu Xue Bao; 2003 Jun; 43(3):315-23. PubMed ID: 16279196
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of the hcnABC gene cluster encoding hydrogen cyanide synthase and anaerobic regulation by ANR in the strictly aerobic biocontrol agent Pseudomonas fluorescens CHA0.
    Laville J; Blumer C; Von Schroetter C; Gaia V; Défago G; Keel C; Haas D
    J Bacteriol; 1998 Jun; 180(12):3187-96. PubMed ID: 9620970
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Initial characterization of a bolA homologue from Pseudomonas fluorescens indicates different roles for BolA-like proteins in P. fluorescens and Escherichia coli.
    Koch B; Nybroe O
    FEMS Microbiol Lett; 2006 Sep; 262(1):48-56. PubMed ID: 16907738
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Contribution of extracytoplasmic function sigma factors to transition metal homeostasis in Cupriavidus metallidurans strain CH34.
    Grosse C; Friedrich S; Nies DH
    J Mol Microbiol Biotechnol; 2007; 12(3-4):227-40. PubMed ID: 17587871
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multiple pathways impact the swarming motility of
    Pastora AB; Rzasa KM; O'Toole GA
    Microbiol Spectr; 2024 Jun; 12(6):e0016624. PubMed ID: 38687073
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.