These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 25165489)

  • 1. A systematic approach to identify novel cancer drug targets using machine learning, inhibitor design and high-throughput screening.
    Jeon J; Nim S; Teyra J; Datti A; Wrana JL; Sidhu SS; Moffat J; Kim PM
    Genome Med; 2014; 6(7):57. PubMed ID: 25165489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A systematic approach to prioritize drug targets using machine learning, a molecular descriptor-based classification model, and high-throughput screening of plant derived molecules: a case study in oral cancer.
    Randhawa V; Kumar Singh A; Acharya V
    Mol Biosyst; 2015 Dec; 11(12):3362-77. PubMed ID: 26467789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting essential genes for identifying potential drug targets in Aspergillus fumigatus.
    Lu Y; Deng J; Rhodes JC; Lu H; Lu LJ
    Comput Biol Chem; 2014 Jun; 50():29-40. PubMed ID: 24569026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SCNrank: spectral clustering for network-based ranking to reveal potential drug targets and its application in pancreatic ductal adenocarcinoma.
    Liu E; Zhang ZZ; Cheng X; Liu X; Cheng L
    BMC Med Genomics; 2020 Apr; 13(Suppl 5):50. PubMed ID: 32241274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine learning prediction of oncology drug targets based on protein and network properties.
    Dezső Z; Ceccarelli M
    BMC Bioinformatics; 2020 Mar; 21(1):104. PubMed ID: 32171238
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine Learning Approaches Toward Building Predictive Models for Small Molecule Modulators of miRNA and Its Utility in Virtual Screening of Molecular Databases.
    Periwal V; Scaria V
    Methods Mol Biol; 2017; 1517():155-168. PubMed ID: 27924481
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Complementary Chemical and Genomic Screening Approach for Druggable Targets in the Nrf2 Pathway and Small Molecule Inhibitors to Overcome Cancer Cell Drug Resistance.
    Matthews JH; Liang X; Paul VJ; Luesch H
    ACS Chem Biol; 2018 May; 13(5):1189-1199. PubMed ID: 29565554
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of lead anti-human cytomegalovirus compounds targeting MAP4K4 via machine learning analysis of kinase inhibitor screening data.
    Strang BL; Asquith CRM; Moshrif HF; Ho CM; Zuercher WJ; Al-Ali H
    PLoS One; 2018; 13(7):e0201321. PubMed ID: 30048526
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Systematic Identification and Assessment of Therapeutic Targets for Breast Cancer Based on Genome-Wide RNA Interference Transcriptomes.
    Liu Y; Yin X; Zhong J; Guan N; Luo Z; Min L; Yao X; Bo X; Dai L; Bai H
    Genes (Basel); 2017 Feb; 8(3):. PubMed ID: 28245581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phenotypic Screening Combined with Machine Learning for Efficient Identification of Breast Cancer-Selective Therapeutic Targets.
    Gautam P; Jaiswal A; Aittokallio T; Al-Ali H; Wennerberg K
    Cell Chem Biol; 2019 Jul; 26(7):970-979.e4. PubMed ID: 31056464
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Target inhibition networks: predicting selective combinations of druggable targets to block cancer survival pathways.
    Tang J; Karhinen L; Xu T; Szwajda A; Yadav B; Wennerberg K; Aittokallio T
    PLoS Comput Biol; 2013; 9(9):e1003226. PubMed ID: 24068907
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Editorial: Current status and perspective on drug targets in tubercle bacilli and drug design of antituberculous agents based on structure-activity relationship.
    Tomioka H
    Curr Pharm Des; 2014; 20(27):4305-6. PubMed ID: 24245755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of a small molecule inhibitor screen approach to identify CXCR4 downstream signaling pathways that promote a mesenchymal and fulvestrant-resistant phenotype in breast cancer cells.
    Matossian MD; Elliott S; Rhodes LV; Martin EC; Hoang VT; Burks HE; Zuercher WJ; Drewry DH; Collins-Burow BM; Burow ME
    Oncol Lett; 2021 May; 21(5):380. PubMed ID: 33777204
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Study of Applications of Machine Learning Based Classification Methods for Virtual Screening of Lead Molecules.
    Vyas R; Bapat S; Jain E; Tambe SS; Karthikeyan M; Kulkarni BD
    Comb Chem High Throughput Screen; 2015; 18(7):658-72. PubMed ID: 26138573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine Learning Models and Pathway Genome Data Base for Trypanosoma cruzi Drug Discovery.
    Ekins S; de Siqueira-Neto JL; McCall LI; Sarker M; Yadav M; Ponder EL; Kallel EA; Kellar D; Chen S; Arkin M; Bunin BA; McKerrow JH; Talcott C
    PLoS Negl Trop Dis; 2015; 9(6):e0003878. PubMed ID: 26114876
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of anti-tumour biologics using primary tumour models, 3-D phenotypic screening and image-based multi-parametric profiling.
    Sandercock AM; Rust S; Guillard S; Sachsenmeier KF; Holoweckyj N; Hay C; Flynn M; Huang Q; Yan K; Herpers B; Price LS; Soden J; Freeth J; Jermutus L; Hollingsworth R; Minter R
    Mol Cancer; 2015 Jul; 14():147. PubMed ID: 26227951
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Bayesian machine learning approach for drug target identification using diverse data types.
    Madhukar NS; Khade PK; Huang L; Gayvert K; Galletti G; Stogniew M; Allen JE; Giannakakou P; Elemento O
    Nat Commun; 2019 Nov; 10(1):5221. PubMed ID: 31745082
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel multi-modal drug repurposing approach for identification of potent ACK1 inhibitors.
    Phatak SS; Zhang S
    Pac Symp Biocomput; 2013; ():29-40. PubMed ID: 23424109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large-Scale Computational Screening Identifies First in Class Multitarget Inhibitor of EGFR Kinase and BRD4.
    Allen BK; Mehta S; Ember SW; Schonbrunn E; Ayad N; Schürer SC
    Sci Rep; 2015 Nov; 5():16924. PubMed ID: 26596901
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine learning models identify molecules active against the Ebola virus
    Ekins S; Freundlich JS; Clark AM; Anantpadma M; Davey RA; Madrid P
    F1000Res; 2015; 4():1091. PubMed ID: 26834994
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.