These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 25165729)

  • 1. SmartMal: a service-oriented behavioral malware detection framework for mobile devices.
    Wang C; Wu Z; Li X; Zhou X; Wang A; Hung PC
    ScientificWorldJournal; 2014; 2014():101986. PubMed ID: 25165729
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A static analysis approach for Android permission-based malware detection systems.
    Mohamad Arif J; Ab Razak MF; Awang S; Tuan Mat SR; Ismail NSN; Firdaus A
    PLoS One; 2021; 16(9):e0257968. PubMed ID: 34591930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A detection method for android application security based on TF-IDF and machine learning.
    Yuan H; Tang Y; Sun W; Liu L
    PLoS One; 2020; 15(9):e0238694. PubMed ID: 32915836
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accurate mobile malware detection and classification in the cloud.
    Wang X; Yang Y; Zeng Y
    Springerplus; 2015; 4():583. PubMed ID: 26543718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Artificial Intelligence Algorithms for Malware Detection in Android-Operated Mobile Devices.
    Alkahtani H; Aldhyani THH
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336437
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Informative and Comprehensive Behavioral Characteristics Analysis Methodology of Android Application for Data Security in Brain-Machine Interfacing.
    Su X; Gong Q; Zheng Y; Liu X; Li KC
    Comput Math Methods Med; 2020; 2020():3658795. PubMed ID: 32300372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detecting Malware by Analyzing App Permissions on Android Platform: A Systematic Literature Review.
    Ehsan A; Catal C; Mishra A
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298282
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of Android Malware in the Internet of Things through the K-Nearest Neighbor Algorithm.
    Babbar H; Rani S; Sah DK; AlQahtani SA; Kashif Bashir A
    Sensors (Basel); 2023 Aug; 23(16):. PubMed ID: 37631793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An analysis of security system for intrusion in Smartphone environment.
    Louk M; Lim H; Lee H
    ScientificWorldJournal; 2014; 2014():983901. PubMed ID: 25165754
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated Android Malware Detection Using User Feedback.
    Duque J; Mendes G; Nunes L; de Almeida A; Serrão C
    Sensors (Basel); 2022 Aug; 22(17):. PubMed ID: 36081021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MFDroid: A Stacking Ensemble Learning Framework for Android Malware Detection.
    Wang X; Zhang L; Zhao K; Ding X; Yu M
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DyHAP: Dynamic Hybrid ANFIS-PSO Approach for Predicting Mobile Malware.
    Afifi F; Anuar NB; Shamshirband S; Choo KK
    PLoS One; 2016; 11(9):e0162627. PubMed ID: 27611312
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Root Exploit Detection and Features Optimization: Mobile Device and Blockchain Based Medical Data Management.
    Firdaus A; Anuar NB; Razak MFA; Hashem IAT; Bachok S; Sangaiah AK
    J Med Syst; 2018 May; 42(6):112. PubMed ID: 29728780
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detecting and classifying method based on similarity matching of Android malware behavior with profile.
    Jang JW; Yun J; Mohaisen A; Woo J; Kim HK
    Springerplus; 2016; 5():273. PubMed ID: 27006882
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-layer detection framework with a high accuracy and efficiency for a malware family over the TLS protocol.
    Zheng R; Liu J; Liu L; Liao S; Li K; Wei J; Li L; Tian Z
    PLoS One; 2020; 15(5):e0232696. PubMed ID: 32374775
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DroidFusion: A Novel Multilevel Classifier Fusion Approach for Android Malware Detection.
    Yerima SY; Sezer S
    IEEE Trans Cybern; 2019 Feb; 49(2):453-466. PubMed ID: 29993965
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Study on the Application of Distributed System Technology-Guided Machine Learning in Malware Detection.
    Jin S; Guo Z; Liu D; Yang Y
    Comput Intell Neurosci; 2022; 2022():4977898. PubMed ID: 35251151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A malware detection system using a hybrid approach of multi-heads attention-based control flow traces and image visualization.
    Ullah F; Srivastava G; Ullah S
    J Cloud Comput (Heidelb); 2022; 11(1):75. PubMed ID: 36345308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Android malware detection using hybrid ANFIS architecture with low computational cost convolutional layers.
    Atacak İ; Kılıç K; Doğru İA
    PeerJ Comput Sci; 2022; 8():e1092. PubMed ID: 36262124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Method for seamless unlock function for mobile applications.
    Vasyltsov I; Changgyu Bak
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():2614-2617. PubMed ID: 28268858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.