BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 25165981)

  • 1. Protein surface softness is the origin of enzyme cold-adaptation of trypsin.
    Isaksen GV; Åqvist J; Brandsdal BO
    PLoS Comput Biol; 2014 Aug; 10(8):e1003813. PubMed ID: 25165981
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzyme surface rigidity tunes the temperature dependence of catalytic rates.
    Isaksen GV; Åqvist J; Brandsdal BO
    Proc Natl Acad Sci U S A; 2016 Jul; 113(28):7822-7. PubMed ID: 27354533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cold adaptation of enzyme reaction rates.
    Bjelic S; Brandsdal BO; Aqvist J
    Biochemistry; 2008 Sep; 47(38):10049-57. PubMed ID: 18759500
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Entropy and Enzyme Catalysis.
    Åqvist J; Kazemi M; Isaksen GV; Brandsdal BO
    Acc Chem Res; 2017 Feb; 50(2):199-207. PubMed ID: 28169522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural comparison of psychrophilic and mesophilic trypsins. Elucidating the molecular basis of cold-adaptation.
    Leiros HK; Willassen NP; Smalås AO
    Eur J Biochem; 2000 Feb; 267(4):1039-49. PubMed ID: 10672012
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Activation Parameters of a Cold-Adapted Short Chain Dehydrogenase Are Insensitive to Enzyme Oligomerization.
    Koenekoop L; van der Ent F; Purg M; Åqvist J
    Biochemistry; 2022 Apr; 61(7):514-522. PubMed ID: 35229609
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of the trypsin-III from Monterey sardine (Sardinops caeruleus): Insights on the cold-adaptation from the A236N mutant.
    Carretas-Valdez MI; Moreno-Cordova EN; Ibarra-Hernandez BG; Cinco-Moroyoqui FJ; Castillo-Yañez FJ; Casas-Flores S; Osuna-Amarillas PS; Islas-Osuna MA; Arvizu-Flores AA
    Int J Biol Macromol; 2020 Dec; 164():2701-2710. PubMed ID: 32827617
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards Rational Computational Engineering of Psychrophilic Enzymes.
    Sočan J; Isaksen GV; Brandsdal BO; Åqvist J
    Sci Rep; 2019 Dec; 9(1):19147. PubMed ID: 31844096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cold adaptation, ca2+ dependency and autolytic stability are related features in a highly active cold-adapted trypsin resistant to autoproteolysis engineered for biotechnological applications.
    Olivera-Nappa A; Reyes F; Andrews BA; Asenjo JA
    PLoS One; 2013; 8(8):e72355. PubMed ID: 23951314
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Principles of Cold Adaptation of Fish Lactate Dehydrogenases Revealed by Computer Simulations of the Catalytic Reaction.
    Koenekoop L; Åqvist J
    Mol Biol Evol; 2023 May; 40(5):. PubMed ID: 37116207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrostatic effects play a central role in cold adaptation of trypsin.
    Brandsdal BO; Smalås AO; Aqvist J
    FEBS Lett; 2001 Jun; 499(1-2):171-5. PubMed ID: 11418134
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermodynamics of the Purine Nucleoside Phosphorylase Reaction Revealed by Computer Simulations.
    Isaksen GV; Åqvist J; Brandsdal BO
    Biochemistry; 2017 Jan; 56(1):306-312. PubMed ID: 27976868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Residue determinants and sequence analysis of cold-adapted trypsins.
    Leiros HK; Willassen NP; Smalås AO
    Extremophiles; 1999 Aug; 3(3):205-19. PubMed ID: 10484177
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cold Adaptation of Triosephosphate Isomerase.
    Åqvist J
    Biochemistry; 2017 Aug; 56(32):4169-4176. PubMed ID: 28731682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computer simulations explain the anomalous temperature optimum in a cold-adapted enzyme.
    Sočan J; Purg M; Åqvist J
    Nat Commun; 2020 May; 11(1):2644. PubMed ID: 32457471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational Analysis of Thermal Adaptation in Extremophilic Chitinases: The Achilles' Heel in Protein Structure and Industrial Utilization.
    Ang DL; Hoque MZ; Hossain MA; Guerriero G; Berni R; Hausman JF; Bokhari SA; Bridge WJ; Siddiqui KS
    Molecules; 2021 Jan; 26(3):. PubMed ID: 33572971
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cold-adapted enzymes.
    Siddiqui KS; Cavicchioli R
    Annu Rev Biochem; 2006; 75():403-33. PubMed ID: 16756497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A rigidifying salt-bridge favors the activity of thermophilic enzyme at high temperatures at the expense of low-temperature activity.
    Lam SY; Yeung RC; Yu TH; Sze KH; Wong KB
    PLoS Biol; 2011 Mar; 9(3):e1001027. PubMed ID: 21423654
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic Adaptation of Psychrophilic Elastase.
    Sočan J; Kazemi M; Isaksen GV; Brandsdal BO; Åqvist J
    Biochemistry; 2018 May; 57(20):2984-2993. PubMed ID: 29726678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Energetic Origin of Different Catalytic Activities in Temperature-Adapted Trypsins.
    Xia YL; Li YP; Fu YX; Liu SQ
    ACS Omega; 2020 Oct; 5(39):25077-25086. PubMed ID: 33043186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.