BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 25165981)

  • 21. Gene analysis and structure prediction for the cold-adaption mechanism of trypsin from the krill Euphausia superba (Dana, 1852).
    Zhou T; Wang X; Yan J; Li Y
    J Sci Food Agric; 2018 Jun; 98(8):3049-3056. PubMed ID: 29194642
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thermodynamics of denaturation of barstar: evidence for cold denaturation and evaluation of the interaction with guanidine hydrochloride.
    Agashe VR; Udgaonkar JB
    Biochemistry; 1995 Mar; 34(10):3286-99. PubMed ID: 7880824
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optimization of electrostatics as a strategy for cold-adaptation: a case study of cold- and warm-active elastases.
    Papaleo E; Olufsen M; De Gioia L; Brandsdal BO
    J Mol Graph Model; 2007 Jul; 26(1):93-103. PubMed ID: 17084098
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparative void-volume analysis of psychrophilic and mesophilic enzymes: Structural bioinformatics of psychrophilic enzymes reveals sources of core flexibility.
    Paredes DI; Watters K; Pitman DJ; Bystroff C; Dordick JS
    BMC Struct Biol; 2011 Oct; 11():42. PubMed ID: 22013889
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Trypsin and trypsinogen from an Antarctic fish: molecular basis of cold adaptation.
    Genicot S; Rentier-Delrue F; Edwards D; VanBeeumen J; Gerday C
    Biochim Biophys Acta; 1996 Nov; 1298(1):45-57. PubMed ID: 8948488
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structure and
    Noby N; Auhim HS; Winter S; Worthy HL; Embaby AM; Saeed H; Hussein A; Pudney CR; Rizkallah PJ; Wells SA; Jones DD
    Open Biol; 2021 Dec; 11(12):210182. PubMed ID: 34847772
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Catalytic efficiency and some structural properties of cold-active protein-tyrosine-phosphatase.
    Tsuruta H; Aizono Y
    J Biochem; 2003 Feb; 133(2):225-30. PubMed ID: 12761186
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular basis of cold adaptation.
    D'Amico S; Claverie P; Collins T; Georlette D; Gratia E; Hoyoux A; Meuwis MA; Feller G; Gerday C
    Philos Trans R Soc Lond B Biol Sci; 2002 Jul; 357(1423):917-25. PubMed ID: 12171655
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Atlantic cod trypsins: from basic research to practical applications.
    Gudmundsdóttir A; Pálsdóttir HM
    Mar Biotechnol (NY); 2005; 7(2):77-88. PubMed ID: 15759084
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Temperature dependence of internal friction in enzyme reactions.
    Rauscher AÁ; Simon Z; Szöllosi GJ; Gráf L; Derényi I; Malnasi-Csizmadia A
    FASEB J; 2011 Aug; 25(8):2804-13. PubMed ID: 21555355
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electrostatics of mesophilic and psychrophilic trypsin isoenzymes: qualitative evaluation of electrostatic differences at the substrate binding site.
    Gorfe AA; Brandsdal BO; Leiros HK; Helland R; Smalås AO
    Proteins; 2000 Aug; 40(2):207-17. PubMed ID: 10842337
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Qgui: A high-throughput interface for automated setup and analysis of free energy calculations and empirical valence bond simulations in biological systems.
    Isaksen GV; Andberg TA; Åqvist J; Brandsdal BO
    J Mol Graph Model; 2015 Jul; 60():15-23. PubMed ID: 26080356
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Physiochemical and Thermodynamic Characterization of Highly Active Mutated Aspergillus niger β-glucosidase for Lignocellulose Hydrolysis.
    Javed MR; Rashid MH; Riaz M; Nadeem H; Qasim M; Ashiq N
    Protein Pept Lett; 2018; 25(2):208-219. PubMed ID: 29384047
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular determinants of enzyme cold adaptation: comparative structural and computational studies of cold- and warm-adapted enzymes.
    Papaleo E; Tiberti M; Invernizzi G; Pasi M; Ranzani V
    Curr Protein Pept Sci; 2011 Nov; 12(7):657-83. PubMed ID: 21827423
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Temperature, Dynamics, and Enzyme-Catalyzed Reaction Rates.
    Arcus VL; Mulholland AJ
    Annu Rev Biophys; 2020 May; 49():163-180. PubMed ID: 32040931
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of cold-adapted Atlantic cod (Gadus morhua) trypsin I--kinetic parameters, autolysis and thermal stability.
    Stefansson B; Helgadóttir L; Olafsdottir S; Gudmundsdottir A; Bjarnason JB
    Comp Biochem Physiol B Biochem Mol Biol; 2010 Feb; 155(2):186-94. PubMed ID: 19913635
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Adjustments of serine proteases of Daphnia pulex in response to temperature changes.
    Dölling R; Becker D; Hawat S; Koch M; Schwarzenberger A; Zeis B
    Comp Biochem Physiol B Biochem Mol Biol; 2016; 194-195():1-10. PubMed ID: 26773656
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Site directed mutagenesis at position 193 of human trypsin 4 alters the rate of conformational change during activation: role of local internal viscosity in protein dynamics.
    Tóth J; Simon Z; Medveczky P; Gombos L; Jelinek B; Szilágyi L; Gráf L; Málnási-Csizmadia A
    Proteins; 2007 Jun; 67(4):1119-27. PubMed ID: 17436323
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A clade of trypsins found in cold-adapted fish.
    Roach JC
    Proteins; 2002 Apr; 47(1):31-44. PubMed ID: 11870863
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.