BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 25166351)

  • 1. A Dynamic Energy Budget (DEB) model for the keystone predator Pisaster ochraceus.
    Monaco CJ; Wethey DS; Helmuth B
    PLoS One; 2014; 9(8):e104658. PubMed ID: 25166351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parameter Estimations of Dynamic Energy Budget (DEB) Model over the Life History of a Key Antarctic Species: The Antarctic Sea Star Odontaster validus Koehler, 1906.
    Agüera A; Collard M; Jossart Q; Moreau C; Danis B
    PLoS One; 2015; 10(10):e0140078. PubMed ID: 26451918
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sea Star Wasting Disease in the Keystone Predator Pisaster ochraceus in Oregon: Insights into Differential Population Impacts, Recovery, Predation Rate, and Temperature Effects from Long-Term Research.
    Menge BA; Cerny-Chipman EB; Johnson A; Sullivan J; Gravem S; Chan F
    PLoS One; 2016; 11(5):e0153994. PubMed ID: 27144391
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shifts in intertidal zonation and refuge use by prey after mass mortalities of two predators.
    Gravem SA; Morgan SG
    Ecology; 2017 Apr; 98(4):1006-1015. PubMed ID: 27935647
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Saxitoxin and the Ochre Sea Star: Molecule of Keystone Significance and a Classic Keystone Species.
    Ferrer RP; Lunsford ET; Candido CM; Strawn ML; Pierce KM
    Integr Comp Biol; 2015 Sep; 55(3):533-42. PubMed ID: 25857524
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reciprocal abundance shifts of the intertidal sea stars, Evasterias troschelii and Pisaster ochraceus, following sea star wasting disease.
    Kay SWC; Gehman AM; Harley CDG
    Proc Biol Sci; 2019 Apr; 286(1901):20182766. PubMed ID: 31014216
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predator identity dominates non-consumptive effects in a disease-impacted rocky shore food web.
    Murie KA; Bourdeau PE
    Oecologia; 2019 Dec; 191(4):945-956. PubMed ID: 31686229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Decimation by sea star wasting disease and rapid genetic change in a keystone species,
    Schiebelhut LM; Puritz JB; Dawson MN
    Proc Natl Acad Sci U S A; 2018 Jul; 115(27):7069-7074. PubMed ID: 29915091
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From individuals to populations to communities: a dynamic energy budget model of marine ecosystem size-spectrum including life history diversity.
    Maury O; Poggiale JC
    J Theor Biol; 2013 May; 324():52-71. PubMed ID: 23395776
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of food concentration and availability on the incidence of cloning in planktotrophic larvae of the sea star Pisaster ochraceus.
    Vickery MS; McClintock JB
    Biol Bull; 2000 Dec; 199(3):298-304. PubMed ID: 11147710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Dynamic Energy Budget (DEB) model to describe Laternula elliptica (King, 1832) seasonal feeding and metabolism.
    Agüera A; Ahn IY; Guillaumot C; Danis B
    PLoS One; 2017; 12(8):e0183848. PubMed ID: 28850607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expansion of intertidal mussel beds following disease-driven reduction of a keystone predator.
    Moritsch MM
    Mar Environ Res; 2021 Jul; 169():105363. PubMed ID: 34030089
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Behavioral types of predator and prey jointly determine prey survival: potential implications for the maintenance of within-species behavioral variation.
    Pruitt JN; Stachowicz JJ; Sih A
    Am Nat; 2012 Feb; 179(2):217-27. PubMed ID: 22218311
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Incorporating Context Dependency of Species Interactions in Species Distribution Models.
    Lany NK; Zarnetske PL; Gouhier TC; Menge BA
    Integr Comp Biol; 2017 Jul; 57(1):159-167. PubMed ID: 28881933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of temperature, season and locality on wasting disease in the keystone predatory sea star Pisaster ochraceus.
    Bates AE; Hilton BJ; Harley CD
    Dis Aquat Organ; 2009 Nov; 86(3):245-51. PubMed ID: 20066959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantifying the Effects of Predator and Prey Body Size on Sea Star Feeding Behaviors.
    Gooding RA; Harley CD
    Biol Bull; 2015 Jun; 228(3):192-200. PubMed ID: 26124446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of environmental stress on intertidal mussels and their sea star predators.
    Petes LE; Mouchka ME; Milston-Clements RH; Momoda TS; Menge BA
    Oecologia; 2008 Jun; 156(3):671-80. PubMed ID: 18347815
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large-scale impacts of sea star wasting disease (SSWD) on intertidal sea stars and implications for recovery.
    Miner CM; Burnaford JL; Ambrose RF; Antrim L; Bohlmann H; Blanchette CA; Engle JM; Fradkin SC; Gaddam R; Harley CDG; Miner BG; Murray SN; Smith JR; Whitaker SG; Raimondi PT
    PLoS One; 2018; 13(3):e0192870. PubMed ID: 29558484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A dynamic energy budget (DEB) model for the energy usage and reproduction of the Icelandic capelin (Mallotus villosus).
    Einarsson B; Birnir B; Sigurðsson S
    J Theor Biol; 2011 Jul; 281(1):1-8. PubMed ID: 21458465
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Revisiting Paine's 1966 Sea Star Removal Experiment, the Most-Cited Empirical Article in the American Naturalist.
    Lafferty KD; Suchanek TH
    Am Nat; 2016 Oct; 188(4):365-78. PubMed ID: 27622872
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.