These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 25166375)

  • 1. Surface-plasmon resonance-enhanced multiphoton emission of high-brightness electron beams from a nanostructured copper cathode.
    Li RK; To H; Andonian G; Feng J; Polyakov A; Scoby CM; Thompson K; Wan W; Padmore HA; Musumeci P
    Phys Rev Lett; 2013 Feb; 110(7):074801. PubMed ID: 25166375
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiphoton photoemission from a copper cathode illuminated by ultrashort laser pulses in an RF photoinjector.
    Musumeci P; Cultrera L; Ferrario M; Filippetto D; Gatti G; Gutierrez MS; Moody JT; Moore N; Rosenzweig JB; Scoby CM; Travish G; Vicario C
    Phys Rev Lett; 2010 Feb; 104(8):084801. PubMed ID: 20366937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-yield, ultrafast, surface plasmon-enhanced, Au nanorod optical field electron emitter arrays.
    Hobbs RG; Yang Y; Fallahi A; Keathley PD; De Leo E; Kärtner FX; Graves WS; Berggren KK
    ACS Nano; 2014 Nov; 8(11):11474-82. PubMed ID: 25380557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmon-enhanced photocathode for high brightness and high repetition rate x-ray sources.
    Polyakov A; Senft C; Thompson KF; Feng J; Cabrini S; Schuck PJ; Padmore HA; Peppernick SJ; Hess WP
    Phys Rev Lett; 2013 Feb; 110(7):076802. PubMed ID: 25166390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intrinsic emittance reduction of an electron beam from metal photocathodes.
    Hauri CP; Ganter R; Le Pimpec F; Trisorio A; Ruchert C; Braun HH
    Phys Rev Lett; 2010 Jun; 104(23):234802. PubMed ID: 20867245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bright and Ultrafast Photoelectron Emission from Aligned Single-Wall Carbon Nanotubes through Multiphoton Exciton Resonance.
    Green ME; Bas DA; Yao HY; Gengler JJ; Headrick RJ; Back TC; Urbas AM; Pasquali M; Kono J; Her TH
    Nano Lett; 2019 Jan; 19(1):158-164. PubMed ID: 30484322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large charge extraction from metallic multifilamentary Nb3Sn photocathode.
    Anghel A; Ardana-Lamas F; Le Pimpec F; Hauri CP
    Phys Rev Lett; 2012 May; 108(19):194801. PubMed ID: 23003048
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct Measurement of Sub-10 fs Relativistic Electron Beams with Ultralow Emittance.
    Maxson J; Cesar D; Calmasini G; Ody A; Musumeci P; Alesini D
    Phys Rev Lett; 2017 Apr; 118(15):154802. PubMed ID: 28452517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long lifetime of bialkali photocathodes operating in high gradient superconducting radio frequency gun.
    Wang E; Litvinenko VN; Pinayev I; Gaowei M; Skaritka J; Belomestnykh S; Ben-Zvi I; Brutus JC; Jing Y; Biswas J; Ma J; Narayan G; Petrushina I; Rahman O; Xin T; Rao T; Severino F; Shih K; Smith K; Wang G; Wu Y
    Sci Rep; 2021 Feb; 11(1):4477. PubMed ID: 33627743
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of ion beam surface treatment on the emission performance of photocathodes.
    Liu Y; Li F; Tian H; Wang G; Wang X
    Nanoscale Adv; 2022 Aug; 4(17):3517-3523. PubMed ID: 36134348
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of a high-bunch-charge 112-MHz superconducting RF photoemission electron source.
    Xin T; Brutus JC; Belomestnykh SA; Ben-Zvi I; Boulware CH; Grimm TL; Hayes T; Litvinenko VN; Mernick K; Narayan G; Orfin P; Pinayev I; Rao T; Severino F; Skaritka J; Smith K; Than R; Tuozzolo J; Wang E; Xiao B; Xie H; Zaltsman A
    Rev Sci Instrum; 2016 Sep; 87(9):093303. PubMed ID: 27782552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overview of the Semiconductor Photocathode Research in China.
    Xie H
    Micromachines (Basel); 2021 Nov; 12(11):. PubMed ID: 34832788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A cryogenically cooled high voltage DC photoemission electron source.
    Lee H; Liu X; Cultrera L; Dunham B; Kostroun VO; Bazarov IV
    Rev Sci Instrum; 2018 Aug; 89(8):083303. PubMed ID: 30184700
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A cryogenically cooled 200 kV DC photoemission electron gun for ultralow emittance photocathodes.
    Gevorkyan G; Sarabia-Cardenas C; Kachwala A; Knill C; Hanks TJ; Bhattacharyya P; Li WH; Cultrera L; Galdi A; Bazarov I; Maxson J; Karkare S
    Rev Sci Instrum; 2023 Sep; 94(9):. PubMed ID: 37702561
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Schottky-enabled photoemission in a rf accelerator photoinjector: possible generation of ultralow transverse thermal-emittance electron beam.
    Yusof ZM; Conde ME; Gai W
    Phys Rev Lett; 2004 Sep; 93(11):114801. PubMed ID: 15447345
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of transport apertures on relay-imaged, sharp-edged laser profiles in photoinjectors and the impact on electron beam properties.
    Roper M; Percival S; Morrow K
    J Synchrotron Radiat; 2024 Jul; 31(Pt 4):723-732. PubMed ID: 38843005
    [TBL] [Abstract][Full Text] [Related]  

  • 17. First demonstration of plasmonic GaN quantum cascade detectors with enhanced efficiency at normal incidence.
    Pesach A; Sakr S; Giraud E; Sorias O; Gal L; Tchernycheva M; Orenstein M; Grandjean N; Julien FH; Bahir G
    Opt Express; 2014 Aug; 22(17):21069-78. PubMed ID: 25321307
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Maximum achievable beam brightness from photoinjectors.
    Bazarov IV; Dunham BM; Sinclair CK
    Phys Rev Lett; 2009 Mar; 102(10):104801. PubMed ID: 19392119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laser-photofield emission from needle cathodes for low-emittance electron beams.
    Ganter R; Bakker R; Gough C; Leemann SC; Paraliev M; Pedrozzi M; Le Pimpec F; Schlott V; Rivkin L; Wrulich A
    Phys Rev Lett; 2008 Feb; 100(6):064801. PubMed ID: 18352480
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Observation of few-cycle, strong-field phenomena in surface plasmon fields.
    Dombi P; Irvine SE; Rácz P; Lenner M; Kroó N; Farkas G; Mitrofanov A; Baltuška A; Fuji T; Krausz F; Elezzabi AY
    Opt Express; 2010 Nov; 18(23):24206-12. PubMed ID: 21164766
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.