These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 25166375)
21. The measurement of photocathode transverse energy distribution curves (TEDCs) using the transverse energy spread spectrometer (TESS) experimental system. Jones LB; Juarez-Lopez DP; Scheibler HE; Terekhov AS; Militsyn BL; Welsch CP; Noakes TCQ Rev Sci Instrum; 2022 Nov; 93(11):113314. PubMed ID: 36461497 [TBL] [Abstract][Full Text] [Related]
22. Time-resolved study of nonlinear photoemission in radio-frequency photoinjectors. Pompili R; Chiadroni E; Cianchi A; Curcio A; Del Dotto A; Ferrario M; Galletti M; Romeo S; Scifo J; Shpakov V; Villa F; Zigler A Opt Lett; 2021 Jun; 46(12):2844-2847. PubMed ID: 34129555 [TBL] [Abstract][Full Text] [Related]
23. Absorption enhancement by matching the cross-section of plasmonic nanowires to the field structure of tightly focused beams. Normatov A; Spektor B; Leviatan Y; Shamir J Opt Express; 2011 Apr; 19(9):8506-13. PubMed ID: 21643100 [TBL] [Abstract][Full Text] [Related]
24. Brightness measurement of an electron impact gas ion source for proton beam writing applications. Liu N; Xu X; Pang R; Raman PS; Khursheed A; van Kan JA Rev Sci Instrum; 2016 Feb; 87(2):02A903. PubMed ID: 26931964 [TBL] [Abstract][Full Text] [Related]
26. Direct measurement of the double emittance minimum in the beam dynamics of the sparc high-brightness photoinjector. Ferrario M; Alesini D; Bacci A; Bellaveglia M; Boni R; Boscolo M; Castellano M; Catani L; Chiadroni E; Cialdi S; Cianchi A; Clozza A; Cultrera L; Di Pirro G; Drago A; Esposito A; Ficcadenti L; Filippetto D; Fusco V; Gallo A; Gatti G; Ghigo A; Giannessi L; Ligi C; Mattioli M; Migliorati M; Mostacci A; Musumeci P; Pace E; Palumbo L; Pellegrino L; Petrarca M; Quattromini M; Ricci R; Ronsivalle C; Rosenzweig J; Rossi AR; Sanelli C; Serafini L; Serio M; Sgamma F; Spataro B; Tazzioli F; Tomassini S; Vaccarezza C; Vescovi M; Vicario C Phys Rev Lett; 2007 Dec; 99(23):234801. PubMed ID: 18233375 [TBL] [Abstract][Full Text] [Related]
27. Novel Ultrabright and Air-Stable Photocathodes Discovered from Machine Learning and Density Functional Theory Driven Screening. Antoniuk ER; Schindler P; Schroeder WA; Dunham B; Pianetta P; Vecchione T; Reed EJ Adv Mater; 2021 Nov; 33(44):e2104081. PubMed ID: 34510594 [TBL] [Abstract][Full Text] [Related]
28. Enhancement of photoemission capability and electron collection efficiency of field-assisted GaN nanowire array photocathode. Liu L; Xia S; Diao Y; Lu F; Tian J Nanotechnology; 2020 Jan; 31(2):025201. PubMed ID: 31539893 [TBL] [Abstract][Full Text] [Related]
29. High-Brightness Continuous-Wave Electron Beams from Superconducting Radio-Frequency Photoemission Gun. Petrushina I; Litvinenko VN; Jing Y; Ma J; Pinayev I; Shih K; Wang G; Wu YH; Altinbas Z; Brutus JC; Belomestnykh S; Di Lieto A; Inacker P; Jamilkowski J; Mahler G; Mapes M; Miller T; Narayan G; Paniccia M; Roser T; Severino F; Skaritka J; Smart L; Smith K; Soria V; Than Y; Tuozzolo J; Wang E; Xiao B; Xin T; Ben-Zvi I; Boulware C; Grimm T; Mihara K; Kayran D; Rao T Phys Rev Lett; 2020 Jun; 124(24):244801. PubMed ID: 32639812 [TBL] [Abstract][Full Text] [Related]
30. Plasmonic films based on colloidal lithography. Ai B; Yu Y; Möhwald H; Zhang G; Yang B Adv Colloid Interface Sci; 2014 Apr; 206():5-16. PubMed ID: 24321859 [TBL] [Abstract][Full Text] [Related]
31. Design, conditioning, and performance of a high voltage, high brightness dc photoelectron gun with variable gap. Maxson J; Bazarov I; Dunham B; Dobbins J; Liu X; Smolenski K Rev Sci Instrum; 2014 Sep; 85(9):093306. PubMed ID: 25273718 [TBL] [Abstract][Full Text] [Related]
33. Magnetic emittance suppression using a bucking coil for a dc photocathode electron gun. Nagai R; Hajima R; Nishimori N Rev Sci Instrum; 2012 Dec; 83(12):123303. PubMed ID: 23277978 [TBL] [Abstract][Full Text] [Related]
35. High-brightness photocathodes through ultrathin surface layers on metals. Németh K; Harkay KC; van Veenendaal M; Spentzouris L; White M; Attenkofer K; Srajer G Phys Rev Lett; 2010 Jan; 104(4):046801. PubMed ID: 20366726 [TBL] [Abstract][Full Text] [Related]
36. Tuning the 3D plasmon field of nanohole arrays. Couture M; Liang Y; Poirier Richard HP; Faid R; Peng W; Masson JF Nanoscale; 2013 Dec; 5(24):12399-408. PubMed ID: 24162773 [TBL] [Abstract][Full Text] [Related]
37. High quality single shot diffraction patterns using ultrashort megaelectron volt electron beams from a radio frequency photoinjector. Musumeci P; Moody JT; Scoby CM; Gutierrez MS; Bender HA; Wilcox NS Rev Sci Instrum; 2010 Jan; 81(1):013306. PubMed ID: 20113092 [TBL] [Abstract][Full Text] [Related]
38. Relativistic electron diffraction at the UCLA Pegasus photoinjector laboratory. Musumeci P; Moody JT; Scoby CM Ultramicroscopy; 2008 Oct; 108(11):1450-3. PubMed ID: 18640780 [TBL] [Abstract][Full Text] [Related]
39. Graphene Intermediate Layer for Robust and Spectrum-Extended Cu Photocathode Activated with Cs and O. Tang S; Zhang Y; Jiang Y; Tong Z; Li S; Zhang J; Qian Y; Jiao G; Shi F; Hao G ACS Appl Mater Interfaces; 2024 Aug; 16(34):45347-45355. PubMed ID: 39141776 [TBL] [Abstract][Full Text] [Related]
40. Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces. Li Z; Butun S; Aydin K ACS Nano; 2014 Aug; 8(8):8242-8. PubMed ID: 25072803 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]