These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 25166390)

  • 1. Plasmon-enhanced photocathode for high brightness and high repetition rate x-ray sources.
    Polyakov A; Senft C; Thompson KF; Feng J; Cabrini S; Schuck PJ; Padmore HA; Peppernick SJ; Hess WP
    Phys Rev Lett; 2013 Feb; 110(7):076802. PubMed ID: 25166390
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface-plasmon resonance-enhanced multiphoton emission of high-brightness electron beams from a nanostructured copper cathode.
    Li RK; To H; Andonian G; Feng J; Polyakov A; Scoby CM; Thompson K; Wan W; Padmore HA; Musumeci P
    Phys Rev Lett; 2013 Feb; 110(7):074801. PubMed ID: 25166375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Brightness Continuous-Wave Electron Beams from Superconducting Radio-Frequency Photoemission Gun.
    Petrushina I; Litvinenko VN; Jing Y; Ma J; Pinayev I; Shih K; Wang G; Wu YH; Altinbas Z; Brutus JC; Belomestnykh S; Di Lieto A; Inacker P; Jamilkowski J; Mahler G; Mapes M; Miller T; Narayan G; Paniccia M; Roser T; Severino F; Skaritka J; Smart L; Smith K; Soria V; Than Y; Tuozzolo J; Wang E; Xiao B; Xin T; Ben-Zvi I; Boulware C; Grimm T; Mihara K; Kayran D; Rao T
    Phys Rev Lett; 2020 Jun; 124(24):244801. PubMed ID: 32639812
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bright and Ultrafast Photoelectron Emission from Aligned Single-Wall Carbon Nanotubes through Multiphoton Exciton Resonance.
    Green ME; Bas DA; Yao HY; Gengler JJ; Headrick RJ; Back TC; Urbas AM; Pasquali M; Kono J; Her TH
    Nano Lett; 2019 Jan; 19(1):158-164. PubMed ID: 30484322
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmon-Enhanced Resonant Photoemission Using Atomically Thick Dielectric Coatings.
    Xiong X; Zhou Y; Luo Y; Li X; Bosman M; Ang LK; Zhang P; Wu L
    ACS Nano; 2020 Jul; 14(7):8806-8815. PubMed ID: 32567835
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-harmonic and single attosecond pulse generation using plasmonic field enhancement in ordered arrays of gold nanoparticles with chirped laser pulses.
    Yang YY; Scrinzi A; Husakou A; Li QG; Stebbings SL; Süßmann F; Yu HJ; Kim S; Rühl E; Herrmann J; Lin XC; Kling MF
    Opt Express; 2013 Jan; 21(2):2195-205. PubMed ID: 23389200
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of high-repetition-rate laser pump/x-ray probe methodologies for synchrotron facilities.
    March AM; Stickrath A; Doumy G; Kanter EP; Krässig B; Southworth SH; Attenkofer K; Kurtz CA; Chen LX; Young L
    Rev Sci Instrum; 2011 Jul; 82(7):073110. PubMed ID: 21806175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Maximum achievable beam brightness from photoinjectors.
    Bazarov IV; Dunham BM; Sinclair CK
    Phys Rev Lett; 2009 Mar; 102(10):104801. PubMed ID: 19392119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of a high-bunch-charge 112-MHz superconducting RF photoemission electron source.
    Xin T; Brutus JC; Belomestnykh SA; Ben-Zvi I; Boulware CH; Grimm TL; Hayes T; Litvinenko VN; Mernick K; Narayan G; Orfin P; Pinayev I; Rao T; Severino F; Skaritka J; Smith K; Than R; Tuozzolo J; Wang E; Xiao B; Xie H; Zaltsman A
    Rev Sci Instrum; 2016 Sep; 87(9):093303. PubMed ID: 27782552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Imaging the Nonlinear Plasmoemission Dynamics of Electrons from Strong Plasmonic Fields.
    Podbiel D; Kahl P; Makris A; Frank B; Sindermann S; Davis TJ; Giessen H; Hoegen MH; Meyer Zu Heringdorf FJ
    Nano Lett; 2017 Nov; 17(11):6569-6574. PubMed ID: 28945435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Suppression of infrared absorption in nanostructured metals by controlling Faraday inductance and electron path length.
    Han SE
    Opt Express; 2016 Feb; 24(3):2577-89. PubMed ID: 26906830
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High harmonic emission from a superposition of multiple unrelated frequency fields.
    Siegel T; Torres R; Hoffmann DJ; Brugnera L; Procino I; Zaïr A; Underwood JG; Springate E; Turcu IC; Chipperfield LE; Marangos JP
    Opt Express; 2010 Mar; 18(7):6853-62. PubMed ID: 20389704
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultracold Electrons via Near-Threshold Photoemission from Single-Crystal Cu(100).
    Karkare S; Adhikari G; Schroeder WA; Nangoi JK; Arias T; Maxson J; Padmore H
    Phys Rev Lett; 2020 Jul; 125(5):054801. PubMed ID: 32794833
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coherent multiphoton photoelectron emission from single au nanorods: the critical role of plasmonic electric near-field enhancement.
    Grubisic A; Schweikhard V; Baker TA; Nesbitt DJ
    ACS Nano; 2013 Jan; 7(1):87-99. PubMed ID: 23194174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Review of Recent Progress on Advanced Photocathodes for Superconducting RF Guns.
    Xiang R; Schaber J
    Micromachines (Basel); 2022 Aug; 13(8):. PubMed ID: 36014163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photon-impenetrable, electron-permeable: the carbon nanotube forest as a medium for multiphoton thermal-photoemission.
    Vahdani Moghaddam M; Yaghoobi P; Sawatzky GA; Nojeh A
    ACS Nano; 2015 Apr; 9(4):4064-9. PubMed ID: 25769341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-brightness photocathodes through ultrathin surface layers on metals.
    Németh K; Harkay KC; van Veenendaal M; Spentzouris L; White M; Attenkofer K; Srajer G
    Phys Rev Lett; 2010 Jan; 104(4):046801. PubMed ID: 20366726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiphoton Effects Enhanced due to Ultrafast Photon-Number Fluctuations.
    Spasibko KY; Kopylov DA; Krutyanskiy VL; Murzina TV; Leuchs G; Chekhova MV
    Phys Rev Lett; 2017 Dec; 119(22):223603. PubMed ID: 29286804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-pass photocathode x-ray ionization chamber for surface EXAFS.
    Shevchik NJ; Fischer DA
    Rev Sci Instrum; 1979 May; 50(5):577. PubMed ID: 18699554
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-level multi-thermal-electron FDTD simulation of plasmonic interaction with semiconducting gain media: applications to plasmonic amplifiers and nano-lasers.
    Chen X; Bhola B; Huang Y; Ho ST
    Opt Express; 2010 Aug; 18(16):17220-38. PubMed ID: 20721111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.