BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 25166516)

  • 1. Simulation of stochastic quantum systems using polynomial chaos expansions.
    Young KC; Grace MD
    Phys Rev Lett; 2013 Mar; 110(11):110402. PubMed ID: 25166516
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulation of stochastic systems via polynomial chaos expansions and convex optimization.
    Fagiano L; Khammash M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 2):036702. PubMed ID: 23031048
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uncertainty quantification of silicon photonic devices with correlated and non-Gaussian random parameters.
    Weng TW; Zhang Z; Su Z; Marzouk Y; Melloni A; Daniel L
    Opt Express; 2015 Feb; 23(4):4242-54. PubMed ID: 25836462
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On using polynomial chaos for modeling uncertainty in acoustic propagation.
    Creamer DB
    J Acoust Soc Am; 2006 Apr; 119(4):1979-94. PubMed ID: 16642812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A stochastic response surface formulation for the description of acoustic propagation through an uncertain internal wave field.
    Gerdes F; Finette S
    J Acoust Soc Am; 2012 Oct; 132(4):2251-64. PubMed ID: 23039422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduced equations of motion for quantum systems driven by diffusive Markov processes.
    Sarovar M; Grace MD
    Phys Rev Lett; 2012 Sep; 109(13):130401. PubMed ID: 23030069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Applying the stochastic Galerkin method to epidemic models with uncertainty in the parameters.
    Harman DB; Johnston PR
    Math Biosci; 2016 Jul; 277():25-37. PubMed ID: 27091743
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robust motion trajectory optimization of overhead cranes based on polynomial chaos expansion.
    Peng H; Zhao H; Wang X; Li Y
    ISA Trans; 2021 Apr; 110():71-85. PubMed ID: 33745509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Analysis of Polynomial Chaos Approximations for Modeling Single-Fluid-Phase Flow in Porous Medium Systems.
    Rupert CP; Miller CT
    J Comput Phys; 2007 Oct; 226(2):2175-2205. PubMed ID: 18836519
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stochastic Analysis of the Efficiency of a Wireless Power Transfer System Subject to Antenna Variability and Position Uncertainties.
    Rossi M; Stockman GJ; Rogier H; Vande Ginste D
    Sensors (Basel); 2016 Jul; 16(7):. PubMed ID: 27447632
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Global sensitivity analysis with multifidelity Monte Carlo and polynomial chaos expansion for vascular haemodynamics.
    Schäfer F; Schiavazzi DE; Hellevik LR; Sturdy J
    Int J Numer Method Biomed Eng; 2024 Jun; ():e3836. PubMed ID: 38837871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uncertainty quantification for the random HIV dynamical model driven by drug adherence.
    Yan D; He M; Tang S
    J Theor Biol; 2024 Jul; ():111895. PubMed ID: 38969168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient uncertainty quantification of large two-dimensional optical systems with a parallelized stochastic Galerkin method.
    Zubac Z; Fostier J; De Zutter D; Vande Ginste D
    Opt Express; 2015 Nov; 23(24):30833-50. PubMed ID: 26698717
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Off-diagonal expansion quantum Monte Carlo.
    Albash T; Wagenbreth G; Hen I
    Phys Rev E; 2017 Dec; 96(6-1):063309. PubMed ID: 29347413
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A variational approach to the stochastic aspects of cellular signal transduction.
    Lan Y; Wolynes PG; Papoian GA
    J Chem Phys; 2006 Sep; 125(12):124106. PubMed ID: 17014165
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uncertainty quantification of time-average quantities of chaotic systems using sensitivity-enhanced polynomial chaos expansion.
    Kantarakias KD; Papadakis G
    Phys Rev E; 2024 Apr; 109(4-1):044208. PubMed ID: 38755938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient sampling for polynomial chaos-based uncertainty quantification and sensitivity analysis using weighted approximate Fekete points.
    Burk KM; Narayan A; Orr JA
    Int J Numer Method Biomed Eng; 2020 Nov; 36(11):e3395. PubMed ID: 32794272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Generalized Polynomial Chaos-Based Approach to Analyze the Impacts of Process Deviations on MEMS Beams.
    Gao L; Zhou ZF; Huang QA
    Sensors (Basel); 2017 Nov; 17(11):. PubMed ID: 29117096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of the Stochastic Quarter-Five Spot Problem Using Polynomial Chaos.
    AbdelFattah H; Al-Johani A; El-Beltagy M
    Molecules; 2020 Jul; 25(15):. PubMed ID: 32722278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uncertainpy: A Python Toolbox for Uncertainty Quantification and Sensitivity Analysis in Computational Neuroscience.
    Tennøe S; Halnes G; Einevoll GT
    Front Neuroinform; 2018; 12():49. PubMed ID: 30154710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.