These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
480 related articles for article (PubMed ID: 25166549)
1. Topological transport in spin-orbit coupled bosonic Mott insulators. Wong CH; Duine RA Phys Rev Lett; 2013 Mar; 110(11):115301. PubMed ID: 25166549 [TBL] [Abstract][Full Text] [Related]
2. Anomalous Hall conductivity from the dipole mode of spin-orbit-coupled cold-atom systems. van der Bijl E; Duine RA Phys Rev Lett; 2011 Nov; 107(19):195302. PubMed ID: 22181618 [TBL] [Abstract][Full Text] [Related]
3. Fractional Chern insulators in topological flat bands with higher Chern number. Liu Z; Bergholtz EJ; Fan H; Läuchli AM Phys Rev Lett; 2012 Nov; 109(18):186805. PubMed ID: 23215313 [TBL] [Abstract][Full Text] [Related]
4. Chern insulators from heavy atoms on magnetic substrates. Garrity KF; Vanderbilt D Phys Rev Lett; 2013 Mar; 110(11):116802. PubMed ID: 25166562 [TBL] [Abstract][Full Text] [Related]
5. The quantum anomalous Hall effect in kagomé lattices. Zhang ZY J Phys Condens Matter; 2011 Sep; 23(36):365801. PubMed ID: 21852732 [TBL] [Abstract][Full Text] [Related]
7. Quantum anomalous Hall effect in 2D organic topological insulators. Wang ZF; Liu Z; Liu F Phys Rev Lett; 2013 May; 110(19):196801. PubMed ID: 23705732 [TBL] [Abstract][Full Text] [Related]
8. Topological Bose-Mott insulators in a one-dimensional optical superlattice. Zhu SL; Wang ZD; Chan YH; Duan LM Phys Rev Lett; 2013 Feb; 110(7):075303. PubMed ID: 25166380 [TBL] [Abstract][Full Text] [Related]
9. The quantum anomalous Hall effect on a star lattice with spin-orbit coupling and an exchange field. Chen M; Wan S J Phys Condens Matter; 2012 Aug; 24(32):325502, 1-6. PubMed ID: 22789969 [TBL] [Abstract][Full Text] [Related]
10. Topological features without a lattice in Rashba spin-orbit coupled atoms. Valdés-Curiel A; Trypogeorgos D; Liang QY; Anderson RP; Spielman IB Nat Commun; 2021 Jan; 12(1):593. PubMed ID: 33500408 [TBL] [Abstract][Full Text] [Related]
11. Two-Dimensional π-Conjugated Covalent-Organic Frameworks as Quantum Anomalous Hall Topological Insulators. Dong L; Kim Y; Er D; Rappe AM; Shenoy VB Phys Rev Lett; 2016 Mar; 116(9):096601. PubMed ID: 26991189 [TBL] [Abstract][Full Text] [Related]
12. Mean-field dynamics of spin-orbit coupled Bose-Einstein condensates. Zhang Y; Mao L; Zhang C Phys Rev Lett; 2012 Jan; 108(3):035302. PubMed ID: 22400756 [TBL] [Abstract][Full Text] [Related]
13. Unraveling materials Berry curvature and Chern numbers from real-time evolution of Bloch states. Shin D; Sato SA; Hübener H; De Giovannini U; Kim J; Park N; Rubio A Proc Natl Acad Sci U S A; 2019 Mar; 116(10):4135-4140. PubMed ID: 30765519 [TBL] [Abstract][Full Text] [Related]
14. Maximum intrinsic spin-Hall conductivity in two-dimensional systems with k-linear spin-orbit interaction. Chen TW J Phys Condens Matter; 2013 Apr; 25(15):155801. PubMed ID: 23507831 [TBL] [Abstract][Full Text] [Related]
16. Measuring the Second Chern Number from Nonadiabatic Effects. Kolodrubetz M Phys Rev Lett; 2016 Jul; 117(1):015301. PubMed ID: 27419575 [TBL] [Abstract][Full Text] [Related]
17. Quantum anomalous Hall effect with higher plateaus. Wang J; Lian B; Zhang H; Xu Y; Zhang SC Phys Rev Lett; 2013 Sep; 111(13):136801. PubMed ID: 24116800 [TBL] [Abstract][Full Text] [Related]
18. Weak Localization and Antilocalization in Topological Materials with Impurity Spin-Orbit Interactions. Liu WE; Hankiewicz EM; Culcer D Materials (Basel); 2017 Jul; 10(7):. PubMed ID: 28773167 [TBL] [Abstract][Full Text] [Related]
19. Unified theory of the anomalous and topological Hall effects with phase-space Berry curvatures. Verma N; Addison Z; Randeria M Sci Adv; 2022 Nov; 8(45):eabq2765. PubMed ID: 36351017 [TBL] [Abstract][Full Text] [Related]
20. Two Dimensional Antiferromagnetic Chern Insulator: NiRuCl Zhou P; Sun CQ; Sun LZ Nano Lett; 2016 Oct; 16(10):6325-6330. PubMed ID: 27648605 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]