These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Imaging the microscopic structure of shear thinning and thickening colloidal suspensions. Cheng X; McCoy JH; Israelachvili JN; Cohen I Science; 2011 Sep; 333(6047):1276-9. PubMed ID: 21885778 [TBL] [Abstract][Full Text] [Related]
4. Discontinuous shear thickening in Brownian suspensions by dynamic simulation. Mari R; Seto R; Morris JF; Denn MM Proc Natl Acad Sci U S A; 2015 Dec; 112(50):15326-30. PubMed ID: 26621744 [TBL] [Abstract][Full Text] [Related]
8. Local shear stress and its correlation with local volume fraction in concentrated non-Brownian suspensions: lattice Boltzmann simulation. Lee YK; Ahn KH; Lee SJ Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):062317. PubMed ID: 25615103 [TBL] [Abstract][Full Text] [Related]
9. Flow regime transitions in dense non-Brownian suspensions: rheology, microstructural characterization, and constitutive modeling. Ness C; Sun J Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):012201. PubMed ID: 25679613 [TBL] [Abstract][Full Text] [Related]
10. Discontinuous shear thickening of frictional hard-sphere suspensions. Seto R; Mari R; Morris JF; Denn MM Phys Rev Lett; 2013 Nov; 111(21):218301. PubMed ID: 24313532 [TBL] [Abstract][Full Text] [Related]
11. Discontinuous shear thickening without inertia in dense non-Brownian suspensions. Wyart M; Cates ME Phys Rev Lett; 2014 Mar; 112(9):098302. PubMed ID: 24655284 [TBL] [Abstract][Full Text] [Related]
12. Order-disorder transition during shear thickening in bidisperse dense suspensions. Fu X; Liu Y; Lu J; Sun R J Colloid Interface Sci; 2024 May; 662():1044-1051. PubMed ID: 38387366 [TBL] [Abstract][Full Text] [Related]
13. Transition from the viscous to inertial regime in dense suspensions. Trulsson M; Andreotti B; Claudin P Phys Rev Lett; 2012 Sep; 109(11):118305. PubMed ID: 23005688 [TBL] [Abstract][Full Text] [Related]
14. Unifying disparate rate-dependent rheological regimes in non-Brownian suspensions. More RV; Ardekani AM Phys Rev E; 2021 Jun; 103(6-1):062610. PubMed ID: 34271688 [TBL] [Abstract][Full Text] [Related]
15. Bridging the rheology of granular flows in three regimes. Chialvo S; Sun J; Sundaresan S Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021305. PubMed ID: 22463200 [TBL] [Abstract][Full Text] [Related]
16. Rheology of cohesive granular materials across multiple dense-flow regimes. Gu Y; Chialvo S; Sundaresan S Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032206. PubMed ID: 25314436 [TBL] [Abstract][Full Text] [Related]
17. Microscopic Origin of Frictional Rheology in Dense Suspensions: Correlations in Force Space. Thomas JE; Ramola K; Singh A; Mari R; Morris JF; Chakraborty B Phys Rev Lett; 2018 Sep; 121(12):128002. PubMed ID: 30296153 [TBL] [Abstract][Full Text] [Related]
18. S-shaped flow curves of shear thickening suspensions: direct observation of frictional rheology. Pan Z; de Cagny H; Weber B; Bonn D Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):032202. PubMed ID: 26465464 [TBL] [Abstract][Full Text] [Related]
19. Shear thickening in granular suspensions: interparticle friction and dynamically correlated clusters. Heussinger C Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):050201. PubMed ID: 24329197 [TBL] [Abstract][Full Text] [Related]