These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 25166801)

  • 1. Electrical readout for coherent phenomena involving Rydberg atoms in thermal vapor cells.
    Barredo D; Kübler H; Daschner R; Löw R; Pfau T
    Phys Rev Lett; 2013 Mar; 110(12):123002. PubMed ID: 25166801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rydberg interaction induced enhanced excitation in thermal atomic vapor.
    Kara D; Bhowmick A; Mohapatra AK
    Sci Rep; 2018 Mar; 8(1):5256. PubMed ID: 29588464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GHz Rabi flopping to Rydberg states in hot atomic vapor cells.
    Huber B; Baluktsian T; Schlagmüller M; Kölle A; Kübler H; Löw R; Pfau T
    Phys Rev Lett; 2011 Dec; 107(24):243001. PubMed ID: 22242993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for strong van der Waals type Rydberg-Rydberg interaction in a thermal vapor.
    Baluktsian T; Huber B; Löw R; Pfau T
    Phys Rev Lett; 2013 Mar; 110(12):123001. PubMed ID: 25166800
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atom-based vector microwave electrometry using rubidium Rydberg atoms in a vapor cell.
    Sedlacek JA; Schwettmann A; Kübler H; Shaffer JP
    Phys Rev Lett; 2013 Aug; 111(6):063001. PubMed ID: 23971570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pulsed Rydberg four-wave mixing with motion-induced dephasing in a thermal vapor.
    Chen YH; Ripka F; Löw R; Pfau T
    Appl Phys B; 2016; 122():18. PubMed ID: 26900261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical spectroscopy of rubidium Rydberg atoms with a 297 nm frequency-doubled dye laser.
    Thoumany P; Hänsch T; Stania G; Urbonas L; Becker T
    Opt Lett; 2009 Jun; 34(11):1621-3. PubMed ID: 19488127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Observation of interference effects via four-photon excitation of highly excited Rydberg states in thermal cesium vapor.
    Kondo JM; Šibalić N; Guttridge A; Wade CG; De Melo NR; Adams CS; Weatherill KJ
    Opt Lett; 2015 Dec; 40(23):5570-3. PubMed ID: 26625053
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rydberg gas theory of a glow discharge plasma: III. Formation, occupied state distributions, free energy, and kinetic control.
    Mason RS; Douglas P
    Phys Chem Chem Phys; 2010 Apr; 12(15):3729-40. PubMed ID: 20358067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction enhanced imaging of individual Rydberg atoms in dense gases.
    Günter G; Robert-de-Saint-Vincent M; Schempp H; Hofmann CS; Whitlock S; Weidemüller M
    Phys Rev Lett; 2012 Jan; 108(1):013002. PubMed ID: 22304259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrafast probing of ejection dynamics of Rydberg atoms and molecular fragments from electronically excited helium nanodroplets.
    Bünermann O; Kornilov O; Haxton DJ; Leone SR; Neumark DM; Gessner O
    J Chem Phys; 2012 Dec; 137(21):214302. PubMed ID: 23231226
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rydberg gas theory of a glow discharge plasma: II. Electrode kinetics (probe theory) and the thermal rate constant for Symmetrical charge transfer involving Rydberg atoms of Ar.
    Mason RS
    Phys Chem Chem Phys; 2010 Apr; 12(15):3718-28. PubMed ID: 20358036
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Femtosecond photoelectron imaging of transient electronic states and Rydberg atom emission from electronically excited he droplets.
    Kornilov O; Bünermann O; Haxton DJ; Leone SR; Neumark DM; Gessner O
    J Phys Chem A; 2011 Jul; 115(27):7891-900. PubMed ID: 21688802
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Laser-enhanced ionization of mercury atoms in an inert atmosphere with avalanche amplification of the signal.
    Clevenger WL; Matveev OI; Cabredo S; Omenetto N; Smith BW; Winefordner JD
    Anal Chem; 1997 Jul; 69(13):2232-7. PubMed ID: 21639354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spontaneous avalanche ionization of a strongly blockaded Rydberg gas.
    Robert-de-Saint-Vincent M; Hofmann CS; Schempp H; Günter G; Whitlock S; Weidemüller M
    Phys Rev Lett; 2013 Jan; 110(4):045004. PubMed ID: 25166173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phase Modulation in Rydberg Dressed Multi-Wave Mixing processes.
    Zhang Z; Zheng H; Yao X; Tian Y; Che J; Wang X; Zhu D; Zhang Y; Xiao M
    Sci Rep; 2015 Jun; 5():10462. PubMed ID: 26053438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Observation of the stark-tuned Förster resonance between two Rydberg atoms.
    Ryabtsev II; Tretyakov DB; Beterov II; Entin VM
    Phys Rev Lett; 2010 Feb; 104(7):073003. PubMed ID: 20366877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Field Distortion and Optimization of a Vapor Cell in Rydberg Atom-Based Radio-Frequency Electric Field Measurement.
    Song Z; Zhang W; Wu Q; Mu H; Liu X; Zhang L; Qu J
    Sensors (Basel); 2018 Sep; 18(10):. PubMed ID: 30248986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency.
    Mohapatra AK; Jackson TR; Adams CS
    Phys Rev Lett; 2007 Mar; 98(11):113003. PubMed ID: 17501049
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rubidium on Helium Droplets: Analysis of an Exotic Rydberg Complex for n* < 20 and 0 ≤ l ≤ 3.
    Lackner F; Krois G; Koch M; Ernst WE
    J Phys Chem Lett; 2012 May; 3(10):1404-8. PubMed ID: 26286790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.