These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

594 related articles for article (PubMed ID: 25166816)

  • 1. Atomic quantum simulation of U(N) and SU(N) non-Abelian lattice gauge theories.
    Banerjee D; Bögli M; Dalmonte M; Rico E; Stebler P; Wiese UJ; Zoller P
    Phys Rev Lett; 2013 Mar; 110(12):125303. PubMed ID: 25166816
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atomic quantum simulation of dynamical gauge fields coupled to fermionic matter: from string breaking to evolution after a quench.
    Banerjee D; Dalmonte M; Müller M; Rico E; Stebler P; Wiese UJ; Zoller P
    Phys Rev Lett; 2012 Oct; 109(17):175302. PubMed ID: 23215198
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum simulations of lattice gauge theories using ultracold atoms in optical lattices.
    Zohar E; Cirac JI; Reznik B
    Rep Prog Phys; 2016 Jan; 79(1):014401. PubMed ID: 26684222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mott insulators of ultracold fermionic alkaline Earth atoms: underconstrained magnetism and chiral spin liquid.
    Hermele M; Gurarie V; Rey AM
    Phys Rev Lett; 2009 Sep; 103(13):135301. PubMed ID: 19905520
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-Abelian SU(2) Lattice Gauge Theories in Superconducting Circuits.
    Mezzacapo A; Rico E; Sabín C; Egusquiza IL; Lamata L; Solano E
    Phys Rev Lett; 2015 Dec; 115(24):240502. PubMed ID: 26705616
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adiabatic loading of one-dimensional SU(N) alkaline-earth-atom fermions in optical lattices.
    Bonnes L; Hazzard KR; Manmana SR; Rey AM; Wessel S
    Phys Rev Lett; 2012 Nov; 109(20):205305. PubMed ID: 23215502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-time dynamics of lattice gauge theories with a few-qubit quantum computer.
    Martinez EA; Muschik CA; Schindler P; Nigg D; Erhard A; Heyl M; Hauke P; Dalmonte M; Monz T; Zoller P; Blatt R
    Nature; 2016 Jun; 534(7608):516-9. PubMed ID: 27337339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cold-atom quantum simulator for SU(2) Yang-Mills lattice gauge theory.
    Zohar E; Cirac JI; Reznik B
    Phys Rev Lett; 2013 Mar; 110(12):125304. PubMed ID: 25166817
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Constrained dynamics via the Zeno effect in quantum simulation: implementing non-Abelian lattice gauge theories with cold atoms.
    Stannigel K; Hauke P; Marcos D; Hafezi M; Diehl S; Dalmonte M; Zoller P
    Phys Rev Lett; 2014 Mar; 112(12):120406. PubMed ID: 24724634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atomic quantum simulation of the lattice gauge-Higgs model: Higgs couplings and emergence of exact local gauge symmetry.
    Kasamatsu K; Ichinose I; Matsui T
    Phys Rev Lett; 2013 Sep; 111(11):115303. PubMed ID: 24074102
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum Simulation of the Universal Features of the Polyakov Loop.
    Zhang J; Unmuth-Yockey J; Zeiher J; Bazavov A; Tsai SW; Meurice Y
    Phys Rev Lett; 2018 Nov; 121(22):223201. PubMed ID: 30547605
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coupling ultracold matter to dynamical gauge fields in optical lattices: From flux attachment to ℤ
    Barbiero L; Schweizer C; Aidelsburger M; Demler E; Goldman N; Grusdt F
    Sci Adv; 2019 Oct; 5(10):eaav7444. PubMed ID: 31646173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal-insulator transition revisited for cold atoms in non-Abelian gauge potentials.
    Satija II; Dakin DC; Clark CW
    Phys Rev Lett; 2006 Nov; 97(21):216401. PubMed ID: 17155755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chiral Instabilities and the Fate of Chirality Imbalance in Non-Abelian Plasmas.
    Schlichting S; Sharma S
    Phys Rev Lett; 2023 Sep; 131(10):102303. PubMed ID: 37739368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Abelian duality, confinement, and chiral-symmetry breaking in a SU(2) QCD-like theory.
    Unsal M
    Phys Rev Lett; 2008 Jan; 100(3):032005. PubMed ID: 18232971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulation of non-Abelian gauge theories with optical lattices.
    Tagliacozzo L; Celi A; Orland P; Mitchell MW; Lewenstein M
    Nat Commun; 2013; 4():2615. PubMed ID: 24162080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamical Quantum Phase Transitions in U(1) Quantum Link Models.
    Huang YP; Banerjee D; Heyl M
    Phys Rev Lett; 2019 Jun; 122(25):250401. PubMed ID: 31347880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SU(2) hadrons on a quantum computer via a variational approach.
    Atas YY; Zhang J; Lewis R; Jahanpour A; Haase JF; Muschik CA
    Nat Commun; 2021 Nov; 12(1):6499. PubMed ID: 34764262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Color superfluidity and "baryon" formation in ultracold fermions.
    Rapp A; Zaránd G; Honerkamp C; Hofstetter W
    Phys Rev Lett; 2007 Apr; 98(16):160405. PubMed ID: 17501400
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Geometric phase and gauge connection in polyatomic molecules.
    Wittig C
    Phys Chem Chem Phys; 2012 May; 14(18):6409-32. PubMed ID: 22314331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.