These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

753 related articles for article (PubMed ID: 25166817)

  • 1. Cold-atom quantum simulator for SU(2) Yang-Mills lattice gauge theory.
    Zohar E; Cirac JI; Reznik B
    Phys Rev Lett; 2013 Mar; 110(12):125304. PubMed ID: 25166817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum simulations of lattice gauge theories using ultracold atoms in optical lattices.
    Zohar E; Cirac JI; Reznik B
    Rep Prog Phys; 2016 Jan; 79(1):014401. PubMed ID: 26684222
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-Abelian SU(2) Lattice Gauge Theories in Superconducting Circuits.
    Mezzacapo A; Rico E; Sabín C; Egusquiza IL; Lamata L; Solano E
    Phys Rev Lett; 2015 Dec; 115(24):240502. PubMed ID: 26705616
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atomic quantum simulation of U(N) and SU(N) non-Abelian lattice gauge theories.
    Banerjee D; Bögli M; Dalmonte M; Rico E; Stebler P; Wiese UJ; Zoller P
    Phys Rev Lett; 2013 Mar; 110(12):125303. PubMed ID: 25166816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-time dynamics of lattice gauge theories with a few-qubit quantum computer.
    Martinez EA; Muschik CA; Schindler P; Nigg D; Erhard A; Heyl M; Hauke P; Dalmonte M; Monz T; Zoller P; Blatt R
    Nature; 2016 Jun; 534(7608):516-9. PubMed ID: 27337339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Constraints on the infrared behavior of the gluon propagator in Yang-Mills theories.
    Cucchieri A; Mendes T
    Phys Rev Lett; 2008 Jun; 100(24):241601. PubMed ID: 18643569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Geometric phase and gauge connection in polyatomic molecules.
    Wittig C
    Phys Chem Chem Phys; 2012 May; 14(18):6409-32. PubMed ID: 22314331
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light-induced gauge fields for ultracold atoms.
    Goldman N; Juzeliūnas G; Öhberg P; Spielman IB
    Rep Prog Phys; 2014 Dec; 77(12):126401. PubMed ID: 25422950
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal-insulator transition revisited for cold atoms in non-Abelian gauge potentials.
    Satija II; Dakin DC; Clark CW
    Phys Rev Lett; 2006 Nov; 97(21):216401. PubMed ID: 17155755
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scalable Cold-Atom Quantum Simulator for Two-Dimensional QED.
    Ott R; Zache TV; Jendrzejewski F; Berges J
    Phys Rev Lett; 2021 Sep; 127(13):130504. PubMed ID: 34623868
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Compactified Dimensions and Background Magnetic Fields on the Phase Structure of SU(N) Gauge Theories.
    D'Elia M; Mariti M
    Phys Rev Lett; 2017 Apr; 118(17):172001. PubMed ID: 28498687
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cold atoms in non-Abelian gauge potentials: from the Hofstadter "moth" to lattice gauge theory.
    Osterloh K; Baig M; Santos L; Zoller P; Lewenstein M
    Phys Rev Lett; 2005 Jul; 95(1):010403. PubMed ID: 16090589
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anomaly nucleation constrains SU(2) gauge theories.
    Halverson J
    Phys Rev Lett; 2013 Dec; 111(26):261601. PubMed ID: 24483790
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Observation of gauge invariance in a 71-site Bose-Hubbard quantum simulator.
    Yang B; Sun H; Ott R; Wang HY; Zache TV; Halimeh JC; Yuan ZS; Hauke P; Pan JW
    Nature; 2020 Nov; 587(7834):392-396. PubMed ID: 33208959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coupling ultracold matter to dynamical gauge fields in optical lattices: From flux attachment to ℤ
    Barbiero L; Schweizer C; Aidelsburger M; Demler E; Goldman N; Grusdt F
    Sci Adv; 2019 Oct; 5(10):eaav7444. PubMed ID: 31646173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthetic Non-Abelian Gauge Fields for Non-Hermitian Systems.
    Pang Z; Wong BTT; Hu J; Yang Y
    Phys Rev Lett; 2024 Jan; 132(4):043804. PubMed ID: 38335358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atomic quantum simulation of the lattice gauge-Higgs model: Higgs couplings and emergence of exact local gauge symmetry.
    Kasamatsu K; Ichinose I; Matsui T
    Phys Rev Lett; 2013 Sep; 111(11):115303. PubMed ID: 24074102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Renormalized Polyakov loop in the deconfined phase of SU(N) gauge theory and gauge-string duality.
    Andreev O
    Phys Rev Lett; 2009 May; 102(21):212001. PubMed ID: 19519096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonrelativistic Corners of N=4 Supersymmetric Yang-Mills Theory.
    Harmark T; Wintergerst N
    Phys Rev Lett; 2020 May; 124(17):171602. PubMed ID: 32412261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gauge Equivariant Neural Networks for Quantum Lattice Gauge Theories.
    Luo D; Carleo G; Clark BK; Stokes J
    Phys Rev Lett; 2021 Dec; 127(27):276402. PubMed ID: 35061436
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 38.