These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

422 related articles for article (PubMed ID: 25166822)

  • 1. Microscopic insight into surface wetting: relations between interfacial water structure and the underlying lattice constant.
    Zhu C; Li H; Huang Y; Zeng XC; Meng S
    Phys Rev Lett; 2013 Mar; 110(12):126101. PubMed ID: 25166822
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics of nanoscale droplets on moving surfaces.
    Ritos K; Dongari N; Borg MK; Zhang Y; Reese JM
    Langmuir; 2013 Jun; 29(23):6936-43. PubMed ID: 23683083
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mimicking natural superhydrophobic surfaces and grasping the wetting process: a review on recent progress in preparing superhydrophobic surfaces.
    Yan YY; Gao N; Barthlott W
    Adv Colloid Interface Sci; 2011 Dec; 169(2):80-105. PubMed ID: 21974918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wetting and interfacial properties of water nanodroplets in contact with graphene and monolayer boron-nitride sheets.
    Li H; Zeng XC
    ACS Nano; 2012 Mar; 6(3):2401-9. PubMed ID: 22356158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of oxygen vacancies on water wettability of a ZnO surface.
    Hu H; Ji HF; Sun Y
    Phys Chem Chem Phys; 2013 Oct; 15(39):16557-65. PubMed ID: 23949186
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wetting Properties of Defective Graphene Oxide: A Molecular Simulation Study.
    Xu K; Zhang J; Hao X; Zhang C; Wei N; Zhang C
    Molecules; 2018 Jun; 23(6):. PubMed ID: 29899306
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Odd-even variations in the wettability of n-alkanethiolate monolayers on gold by water and hexadecane: a molecular dynamics simulation study.
    Srivastava P; Chapman WG; Laibinis PE
    Langmuir; 2005 Dec; 21(26):12171-8. PubMed ID: 16342989
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interfacial water at hydrophobic and hydrophilic surfaces: slip, viscosity, and diffusion.
    Sendner C; Horinek D; Bocquet L; Netz RR
    Langmuir; 2009 Sep; 25(18):10768-81. PubMed ID: 19591481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superhydrophilicity of α-alumina surfaces results from tight binding of interfacial waters to specific aluminols.
    Wang R; Zou Y; Remsing RC; Ross NO; Klein ML; Carnevale V; Borguet E
    J Colloid Interface Sci; 2022 Dec; 628(Pt A):943-954. PubMed ID: 35964442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How surface wettability affects the binding, folding, and dynamics of hydrophobic polymers at interfaces.
    Jamadagni SN; Godawat R; Garde S
    Langmuir; 2009 Nov; 25(22):13092-9. PubMed ID: 19492828
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Water slippage versus contact angle: a quasiuniversal relationship.
    Huang DM; Sendner C; Horinek D; Netz RR; Bocquet L
    Phys Rev Lett; 2008 Nov; 101(22):226101. PubMed ID: 19113490
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Consequences of water between two hydrophobic surfaces on adhesion and wetting.
    Defante AP; Burai TN; Becker ML; Dhinojwala A
    Langmuir; 2015 Mar; 31(8):2398-406. PubMed ID: 25668056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pressure dependence of Kapitza resistance at gold/water and silicon/water interfaces.
    Pham A; Barisik M; Kim B
    J Chem Phys; 2013 Dec; 139(24):244702. PubMed ID: 24387383
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of surface polarity on water contact angle and interfacial hydration structure.
    Giovambattista N; Debenedetti PG; Rossky PJ
    J Phys Chem B; 2007 Aug; 111(32):9581-7. PubMed ID: 17658789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Static and dynamic contact angles of water droplet on a solid surface using molecular dynamics simulation.
    Hong SD; Ha MY; Balachandar S
    J Colloid Interface Sci; 2009 Nov; 339(1):187-95. PubMed ID: 19691965
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wetting transparency of graphene.
    Rafiee J; Mi X; Gullapalli H; Thomas AV; Yavari F; Shi Y; Ajayan PM; Koratkar NA
    Nat Mater; 2012 Jan; 11(3):217-22. PubMed ID: 22266468
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The hydrophobic effect: molecular dynamics simulations of water confined between extended hydrophobic and hydrophilic surfaces.
    Jensen MØ; Mouritsen OG; Peters GH
    J Chem Phys; 2004 May; 120(20):9729-44. PubMed ID: 15267989
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Topography driven spreading.
    McHale G; Shirtcliffe NJ; Aqil S; Perry CC; Newton MI
    Phys Rev Lett; 2004 Jul; 93(3):036102. PubMed ID: 15323838
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influences of ambient temperature, surface fluctuation and charge density on wettability properties of graphene film.
    Wang W; Zhang H; Li S; Zhan Y
    Nanotechnology; 2016 Feb; 27(7):075707. PubMed ID: 26783182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.