These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 25166831)

  • 1. Theory of strong coupling between quantum emitters and propagating surface plasmons.
    González-Tudela A; Huidobro PA; Martín-Moreno L; Tejedor C; García-Vidal FJ
    Phys Rev Lett; 2013 Mar; 110(12):126801. PubMed ID: 25166831
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strong coupling between surface plasmon polaritons and emitters: a review.
    Törmä P; Barnes WL
    Rep Prog Phys; 2015 Jan; 78(1):013901. PubMed ID: 25536670
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quasichiral Interactions between Quantum Emitters at the Nanoscale.
    Downing CA; Carreño JCL; Laussy FP; Del Valle E; Fernández-Domínguez AI
    Phys Rev Lett; 2019 Feb; 122(5):057401. PubMed ID: 30822016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum entangling gates using the strong coupling between two optical emitters and nanowire surface plasmons.
    Yang J; Lin GW; Niu YP; Gong SQ
    Opt Express; 2013 Jul; 21(13):15618-26. PubMed ID: 23842347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coherent emission from a disordered organic semiconductor induced by strong coupling with surface plasmons.
    Guebrou SA; Symonds C; Homeyer E; Plenet JC; Gartstein YN; Agranovich VM; Bellessa J
    Phys Rev Lett; 2012 Feb; 108(6):066401. PubMed ID: 22401091
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coupling of single quantum emitters to plasmons propagating on mechanically etched wires.
    Kumar S; Huck A; Lu YW; Andersen UL
    Opt Lett; 2013 Oct; 38(19):3838-41. PubMed ID: 24081066
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrafast energy transfer between molecular assemblies and surface plasmons in the strong coupling regime.
    Sukharev M; Seideman T; Gordon RJ; Salomon A; Prior Y
    ACS Nano; 2014 Jan; 8(1):807-17. PubMed ID: 24295332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum optics with surface plasmons.
    Chang DE; Sørensen AS; Hemmer PR; Lukin MD
    Phys Rev Lett; 2006 Aug; 97(5):053002. PubMed ID: 17026098
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmonics in atomically thin materials.
    García de Abajo FJ; Manjavacas A
    Faraday Discuss; 2015; 178():87-107. PubMed ID: 25774774
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling optical coupling of plasmons and inhomogeneously broadened emitters.
    Purcell TAR; Sukharev M; Seideman T
    J Chem Phys; 2019 Mar; 150(12):124112. PubMed ID: 30927891
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation of single optical plasmons in metallic nanowires coupled to quantum dots.
    Akimov AV; Mukherjee A; Yu CL; Chang DE; Zibrov AS; Hemmer PR; Park H; Lukin MD
    Nature; 2007 Nov; 450(7168):402-6. PubMed ID: 18004381
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coherent transport of nanowire surface plasmons coupled to quantum dots.
    Chen W; Chen GY; Chen YN
    Opt Express; 2010 May; 18(10):10360-8. PubMed ID: 20588891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical study of lithographically defined, subwavelength plasmonic wires and their coupling to embedded quantum emitters.
    Bracher G; Schraml K; Ossiander M; Frédérick S; Finley JJ; Kaniber M
    Nanotechnology; 2014 Feb; 25(7):075203. PubMed ID: 24452056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmons: untangling the classical, experimental, and quantum mechanical definitions.
    Gieseking RLM
    Mater Horiz; 2022 Jan; 9(1):25-42. PubMed ID: 34608479
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical sensors based on spectroscopy of localized surface plasmons on metallic nanoparticles: sensitivity considerations.
    Kvasnicka P; Homola J
    Biointerphases; 2008 Sep; 3(3):FD4-11. PubMed ID: 20408699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multifrequency multi-qubit entanglement based on plasmonic hot spots.
    Ren J; Wu T; Zhang X
    Sci Rep; 2015 Sep; 5():13941. PubMed ID: 26350051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum dipole emitters in structured environments: a scattering approach: tutorial.
    Bouchet D; Carminati R
    J Opt Soc Am A Opt Image Sci Vis; 2019 Feb; 36(2):186-195. PubMed ID: 30874096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The quantum coherent mechanism for singlet fission: experiment and theory.
    Chan WL; Berkelbach TC; Provorse MR; Monahan NR; Tritsch JR; Hybertsen MS; Reichman DR; Gao J; Zhu XY
    Acc Chem Res; 2013 Jun; 46(6):1321-9. PubMed ID: 23581494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radiative coupling of two quantum emitters in arbitrary metallic nanostructures.
    Liu J; Chen G; Li L; Liu R; Li W; Liu G; Wu F; Chen Y
    Sci Rep; 2022 Apr; 12(1):6901. PubMed ID: 35478199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental study of the interaction between localized and propagating surface plasmons.
    Chu Y; Crozier KB
    Opt Lett; 2009 Feb; 34(3):244-6. PubMed ID: 19183619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.