These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Structural, elastic, vibrational and electronic properties of amorphous Al2O3 from ab initio calculations. Davis S; Gutiérrez G J Phys Condens Matter; 2011 Dec; 23(49):495401. PubMed ID: 22101197 [TBL] [Abstract][Full Text] [Related]
24. Numerical investigations into mechanical properties of hexagonal silicon carbon nanowires and nanotubes. Zheng B; Lowther JE Nanoscale; 2010 Sep; 2(9):1733-9. PubMed ID: 20820704 [TBL] [Abstract][Full Text] [Related]
25. Epitaxial growth of silicon nanowires using an aluminium catalyst. Wang Y; Schmidt V; Senz S; Gösele U Nat Nanotechnol; 2006 Dec; 1(3):186-9. PubMed ID: 18654184 [TBL] [Abstract][Full Text] [Related]
26. From pure C(60) to silicon carbon fullerene-based nanotube: an ab initio study. Li J; Xia Y; Zhao M; Liu X; Song C; Li L; Li F J Chem Phys; 2008 Apr; 128(15):154719. PubMed ID: 18433270 [TBL] [Abstract][Full Text] [Related]
27. Electronic properties of GaP nanowires of different shapes. Srivastava P; Singh S; Mishra A J Nanosci Nanotechnol; 2011 Dec; 11(12):10464-9. PubMed ID: 22408927 [TBL] [Abstract][Full Text] [Related]
28. Temperature and quantum effects in the stability of pure and doped gold nanowires. Hobi E; Fazzio A; da Silva AJ Phys Rev Lett; 2008 Feb; 100(5):056104. PubMed ID: 18352396 [TBL] [Abstract][Full Text] [Related]
29. The effect of the electron-phonon coupling on the thermal conductivity of silicon nanowires. Wan W; Xiong B; Zhang W; Feng J; Wang E J Phys Condens Matter; 2012 Jul; 24(29):295402. PubMed ID: 22728956 [TBL] [Abstract][Full Text] [Related]
31. Formation of compositionally abrupt axial heterojunctions in silicon-germanium nanowires. Wen CY; Reuter MC; Bruley J; Tersoff J; Kodambaka S; Stach EA; Ross FM Science; 2009 Nov; 326(5957):1247-50. PubMed ID: 19965471 [TBL] [Abstract][Full Text] [Related]
32. Band-structure engineering of gold atomic wires on silicon by controlled doping. Choi WH; Kang PG; Ryang KD; Yeom HW Phys Rev Lett; 2008 Mar; 100(12):126801. PubMed ID: 18517895 [TBL] [Abstract][Full Text] [Related]
33. Effect of impurities in the large Au-Au distances in gold nanowires. Novaes FD; da Silva AJ; da Silva EZ; Fazzio A Phys Rev Lett; 2003 Jan; 90(3):036101. PubMed ID: 12570509 [TBL] [Abstract][Full Text] [Related]
34. Theoretical study of atomic structure and elastic properties of branched silicon nanowires. Sorokin PB; Kvashnin AG; Kvashnin DG; Filicheva JA; Avramov PV; Fedorov AS; Chernozatonskii LA ACS Nano; 2010 May; 4(5):2784-90. PubMed ID: 20411911 [TBL] [Abstract][Full Text] [Related]
35. Metallic rare-earth silicide nanowires on silicon surfaces. Dähne M; Wanke M J Phys Condens Matter; 2013 Jan; 25(1):014012. PubMed ID: 23221358 [TBL] [Abstract][Full Text] [Related]
36. Ab initio calculation of energy levels for phosphorus donors in silicon. Smith JS; Budi A; Per MC; Vogt N; Drumm DW; Hollenberg LCL; Cole JH; Russo SP Sci Rep; 2017 Jul; 7(1):6010. PubMed ID: 28729674 [TBL] [Abstract][Full Text] [Related]
37. Novel silicon-carbon fullerene-like nanostructures: an Ab initio study on the stability of Si54C6 and Si60C6 clusters. Srinivasan A; Ray AK J Nanosci Nanotechnol; 2006 Jan; 6(1):43-53. PubMed ID: 16573068 [TBL] [Abstract][Full Text] [Related]
38. Surface dangling-bond States and band lineups in hydrogen-terminated Si, Ge, and Ge/si nanowires. Kagimura R; Nunes RW; Chacham H Phys Rev Lett; 2007 Jan; 98(2):026801. PubMed ID: 17358629 [TBL] [Abstract][Full Text] [Related]
39. Degenerate electronic structure of reconstructed MnSi(1.7) nanowires on Si(001). Liu HJ; Owen JH; Miki K J Phys Condens Matter; 2012 Mar; 24(9):095005. PubMed ID: 22275007 [TBL] [Abstract][Full Text] [Related]
40. The search for the most stable structures of silicon-carbon monolayer compounds. Li P; Zhou R; Zeng XC Nanoscale; 2014 Oct; 6(20):11685-91. PubMed ID: 25185699 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]