These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

651 related articles for article (PubMed ID: 25166866)

  • 1. Sustained delivery of BMP-2 enhanced osteoblastic differentiation of BMSCs based on surface hydroxyapatite nanostructure in chitosan-HAp scaffold.
    Wang G; Qiu J; Zheng L; Ren N; Li J; Liu H; Miao J
    J Biomater Sci Polym Ed; 2014; 25(16):1813-27. PubMed ID: 25166866
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro assessment of the differentiation potential of bone marrow-derived mesenchymal stem cells on genipin-chitosan conjugation scaffold with surface hydroxyapatite nanostructure for bone tissue engineering.
    Wang G; Zheng L; Zhao H; Miao J; Sun C; Ren N; Wang J; Liu H; Tao X
    Tissue Eng Part A; 2011 May; 17(9-10):1341-9. PubMed ID: 21247339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Construction of a fluorescent nanostructured chitosan-hydroxyapatite scaffold by nanocrystallon induced biomimetic mineralization and its cell biocompatibility.
    Wang G; Zheng L; Zhao H; Miao J; Sun C; Liu H; Huang Z; Yu X; Wang J; Tao X
    ACS Appl Mater Interfaces; 2011 May; 3(5):1692-701. PubMed ID: 21491931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [A novel tissue-engineered bone constructed by using human adipose-derived stem cells and biomimetic calcium phosphate scaffold coprecipitated with bone morphogenetic protein-2].
    Jiang WR; Zhang X; Liu YS; Wu G; Ge YJ; Zhou YS
    Beijing Da Xue Xue Bao Yi Xue Ban; 2017 Feb; 49(1):6-15. PubMed ID: 28202997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The promotion of bone regeneration by nanofibrous hydroxyapatite/chitosan scaffolds by effects on integrin-BMP/Smad signaling pathway in BMSCs.
    Liu H; Peng H; Wu Y; Zhang C; Cai Y; Xu G; Li Q; Chen X; Ji J; Zhang Y; OuYang HW
    Biomaterials; 2013 Jun; 34(18):4404-17. PubMed ID: 23515177
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Osteoinduction and proliferation of bone-marrow stromal cells in three-dimensional poly (ε-caprolactone)/ hydroxyapatite/collagen scaffolds.
    Wang T; Yang X; Qi X; Jiang C
    J Transl Med; 2015 May; 13():152. PubMed ID: 25952675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bone repair by periodontal ligament stem cellseeded nanohydroxyapatite-chitosan scaffold.
    Ge S; Zhao N; Wang L; Yu M; Liu H; Song A; Huang J; Wang G; Yang P
    Int J Nanomedicine; 2012; 7():5405-14. PubMed ID: 23091383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of biomimetic and bioactive cold plasma-modified nanostructured scaffolds for enhanced osteogenic differentiation of bone marrow-derived mesenchymal stem cells.
    Wang M; Cheng X; Zhu W; Holmes B; Keidar M; Zhang LG
    Tissue Eng Part A; 2014 Mar; 20(5-6):1060-71. PubMed ID: 24219622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. BMP-2 Derived Peptide and Dexamethasone Incorporated Mesoporous Silica Nanoparticles for Enhanced Osteogenic Differentiation of Bone Mesenchymal Stem Cells.
    Zhou X; Feng W; Qiu K; Chen L; Wang W; Nie W; Mo X; He C
    ACS Appl Mater Interfaces; 2015 Jul; 7(29):15777-89. PubMed ID: 26133753
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strontium hydroxyapatite/chitosan nanohybrid scaffolds with enhanced osteoinductivity for bone tissue engineering.
    Lei Y; Xu Z; Ke Q; Yin W; Chen Y; Zhang C; Guo Y
    Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():134-142. PubMed ID: 28024569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoparticle-modified chitosan-agarose-gelatin scaffold for sustained release of SDF-1 and BMP-2.
    Wang B; Guo Y; Chen X; Zeng C; Hu Q; Yin W; Li W; Xie H; Zhang B; Huang X; Yu F
    Int J Nanomedicine; 2018; 13():7395-7408. PubMed ID: 30519022
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced angiogenesis and osteogenesis in critical bone defects by the controlled release of BMP-2 and VEGF: implantation of electron beam melting-fabricated porous Ti6Al4V scaffolds incorporating growth factor-doped fibrin glue.
    Lv J; Xiu P; Tan J; Jia Z; Cai H; Liu Z
    Biomed Mater; 2015 Jun; 10(3):035013. PubMed ID: 26107105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth and osteogenic differentiation of alveolar human bone marrow-derived mesenchymal stem cells on chitosan/hydroxyapatite composite fabric.
    Kim BS; Kim JS; Chung YS; Sin YW; Ryu KH; Lee J; You HK
    J Biomed Mater Res A; 2013 Jun; 101(6):1550-8. PubMed ID: 23135904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sequential and sustained release of SDF-1 and BMP-2 from silk fibroin-nanohydroxyapatite scaffold for the enhancement of bone regeneration.
    Shen X; Zhang Y; Gu Y; Xu Y; Liu Y; Li B; Chen L
    Biomaterials; 2016 Nov; 106():205-16. PubMed ID: 27566869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Natural stimulus responsive scaffolds/cells for bone tissue engineering: influence of lysozyme upon scaffold degradation and osteogenic differentiation of cultured marrow stromal cells induced by CaP coatings.
    Martins AM; Pham QP; Malafaya PB; Raphael RM; Kasper FK; Reis RL; Mikos AG
    Tissue Eng Part A; 2009 Aug; 15(8):1953-63. PubMed ID: 19327018
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Zero-order controlled release of BMP2-derived peptide P24 from the chitosan scaffold by chemical grafting modification technique for promotion of osteogenesis
    Chen Y; Liu X; Liu R; Gong Y; Wang M; Huang Q; Feng Q; Yu B
    Theranostics; 2017; 7(5):1072-1087. PubMed ID: 28435449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrospun biomimetic scaffold of hydroxyapatite/chitosan supports enhanced osteogenic differentiation of mMSCs.
    Peng H; Yin Z; Liu H; Chen X; Feng B; Yuan H; Su B; Ouyang H; Zhang Y
    Nanotechnology; 2012 Dec; 23(48):485102. PubMed ID: 23128604
    [TBL] [Abstract][Full Text] [Related]  

  • 18. BMP-2 and bFGF release and in vitro effect on human osteoblasts after adsorption to bone grafts and biomaterials.
    Draenert FG; Nonnenmacher AL; Kämmerer PW; Goldschmitt J; Wagner W
    Clin Oral Implants Res; 2013 Jul; 24(7):750-7. PubMed ID: 22524399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of Bone-Specific Tissue Regeneration by Incorporating Bone Morphogenetic Protein and Controlling the Shell Thickness of Silk Fibroin/Chitosan/Nanohydroxyapatite Core-Shell Nanofibrous Membranes.
    Shalumon KT; Lai GJ; Chen CH; Chen JP
    ACS Appl Mater Interfaces; 2015 Sep; 7(38):21170-81. PubMed ID: 26355766
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of hydroxyapatite nanostructure on channel surface of porcine acellular dermal matrix scaffold on cell viability and osteogenic differentiation of human periodontal ligament stem cells.
    Ge S; Zhao N; Wang L; Liu H; Yang P
    Int J Nanomedicine; 2013; 8():1887-95. PubMed ID: 23690686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.