BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 25166887)

  • 41. Vibrational spectrum and structure of CoO6: a model compound for molecular oxygen reversible binding on cobalt oxides and salts; a combined IR matrix isolation and theoretical study.
    Marzouk A; Danset D; Zhou MF; Gong Y; Alikhani ME; Manceron L
    J Phys Chem A; 2011 Aug; 115(32):9014-21. PubMed ID: 21721549
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Benchmark theoretical study of the π-π binding energy in the benzene dimer.
    Miliordos E; Aprà E; Xantheas SS
    J Phys Chem A; 2014 Sep; 118(35):7568-78. PubMed ID: 24761749
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Spin-orbit coupling prevents spin channel suppression of transition metal atoms on armchair graphene nanoribbons.
    Rojas WY; Villegas CEP; Rocha AR
    Phys Chem Chem Phys; 2018 Dec; 20(47):29826-29832. PubMed ID: 30467570
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Spin-induced band modifications of graphene through intercalation of magnetic iron atoms.
    Sung SJ; Yang JW; Lee PR; Kim JG; Ryu MT; Park HM; Lee G; Hwang CC; Kim KS; Kim JS; Chung JW
    Nanoscale; 2014 Apr; 6(7):3824-9. PubMed ID: 24584481
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Pt on graphene monolayers supported on a Ni(111) substrate: relativistic density-functional calculations.
    Błoński P; Hafner J
    J Chem Phys; 2012 Feb; 136(7):074701. PubMed ID: 22360257
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Interaction of diatomic germanium with lithium atoms: electronic structure and stability.
    Gopakumar G; Lievens P; Nguyen MT
    J Chem Phys; 2006 Jun; 124(21):214312. PubMed ID: 16774412
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Adsorption and dissociation of NO on Ir(100): a first-principles study.
    He CZ; Wang H; Zhu P; Liu JY
    J Chem Phys; 2011 Nov; 135(20):204707. PubMed ID: 22128952
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Quantification of the interaction forces between metals and graphene by quantum chemical calculations and dynamic force measurements under ambient conditions.
    Lazar P; Zhang S; Safářová K; Li Q; Froning JP; Granatier J; Hobza P; Zbořil R; Besenbacher F; Dong M; Otyepka M
    ACS Nano; 2013 Feb; 7(2):1646-51. PubMed ID: 23346897
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Band gap and magnetic engineering of penta-graphene
    Chen J; Cui H; Wang P; Zheng Y; Wang D; Chen H; Yuan H
    Phys Chem Chem Phys; 2020 Nov; 22(45):26155-26166. PubMed ID: 33185209
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Quantum Monte Carlo calculation of the binding energy of bilayer graphene.
    Mostaani E; Drummond ND; Fal'ko VI
    Phys Rev Lett; 2015 Sep; 115(11):115501. PubMed ID: 26406840
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Spin-Orbit Coupling Changes the Identity of the Hyper-Open-Shell Ground State of Ce
    Ning J; Truhlar DG
    J Chem Theory Comput; 2021 Mar; 17(3):1421-1434. PubMed ID: 33576629
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Bonding and magnetism of Fe(6)-(C(6)H(6))(m), m = 1, 2.
    Valencia I; Guevara-García A; Castro M
    J Phys Chem A; 2009 Jun; 113(22):6222-38. PubMed ID: 19422210
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Graphene nanoribbons as low band gap donor materials for organic photovoltaics: quantum chemical aided design.
    Osella S; Narita A; Schwab MG; Hernandez Y; Feng X; Müllen K; Beljonne D
    ACS Nano; 2012 Jun; 6(6):5539-48. PubMed ID: 22631451
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Detailed ab initio first-principles study of the magnetic anisotropy in a family of trigonal pyramidal iron(II) pyrrolide complexes.
    Atanasov M; Ganyushin D; Pantazis DA; Sivalingam K; Neese F
    Inorg Chem; 2011 Aug; 50(16):7460-77. PubMed ID: 21744845
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Adsorption of nitrogen oxides on graphene and graphene oxides: insights from density functional calculations.
    Tang S; Cao Z
    J Chem Phys; 2011 Jan; 134(4):044710. PubMed ID: 21280788
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Graphene nanoribbon electrical decoupling from metallic substrates.
    Borriello I; Cantele G; Ninno D
    Nanoscale; 2013 Jan; 5(1):291-8. PubMed ID: 23160545
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Graphene adhesion on MoS₂ monolayer: an ab initio study.
    Ma Y; Dai Y; Guo M; Niu C; Huang B
    Nanoscale; 2011 Sep; 3(9):3883-7. PubMed ID: 21833391
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A relativistic DFT methodology for calculating the structures and NMR chemical shifts of octahedral platinum and iridium complexes.
    Vícha J; Patzschke M; Marek R
    Phys Chem Chem Phys; 2013 May; 15(20):7740-54. PubMed ID: 23598437
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The water-benzene interaction: insight from electronic structure theories.
    Ma J; Alfè D; Michaelides A; Wang E
    J Chem Phys; 2009 Apr; 130(15):154303. PubMed ID: 19388742
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Electronic properties of graphene nanostructures.
    Molitor F; Güttinger J; Stampfer C; Dröscher S; Jacobsen A; Ihn T; Ensslin K
    J Phys Condens Matter; 2011 Jun; 23(24):243201. PubMed ID: 21613728
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.