These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

375 related articles for article (PubMed ID: 25167017)

  • 1. Unconventional superconductivity from local spin fluctuations in the Kondo lattice.
    Bodensiek O; Žitko R; Vojta M; Jarrell M; Pruschke T
    Phys Rev Lett; 2013 Apr; 110(14):146406. PubMed ID: 25167017
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Foundations of heavy-fermion superconductivity: lattice Kondo effect and Mott physics.
    Steglich F; Wirth S
    Rep Prog Phys; 2016 Aug; 79(8):084502. PubMed ID: 27376190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superconductivity of composite particles in a two-channel Kondo lattice.
    Hoshino S; Kuramoto Y
    Phys Rev Lett; 2014 Apr; 112(16):167204. PubMed ID: 24815667
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlling unconventional superconductivity in artificially engineered
    Naritsuka M; Terashima T; Matsuda Y
    J Phys Condens Matter; 2021 May; 33(27):. PubMed ID: 33946054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Emergent loop-nodal s(±)-wave superconductivity in CeCu(2)Si(2): similarities to the iron-based superconductors.
    Ikeda H; Suzuki MT; Arita R
    Phys Rev Lett; 2015 Apr; 114(14):147003. PubMed ID: 25910154
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unique spin dynamics and unconventional superconductivity in the layered heavy fermion compound CeIrIn5: NQR evidence.
    Zheng G; Tanabe K; Mito T; Kawasaki S; Kitaoka Y; Aoki D; Haga Y; Onuki Y
    Phys Rev Lett; 2001 May; 86(20):4664-7. PubMed ID: 11384309
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Field-induced quantum fluctuations in the heavy fermion superconductor CeCu(2)Ge(2).
    Singh DK; Thamizhavel A; Lynn JW; Dhar S; Rodriguez-Rivera J; Herman T
    Sci Rep; 2011; 1():117. PubMed ID: 22355634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Competing d-Wave and p-Wave Spin-Singlet Superconductivities in the Two-Dimensional Kondo Lattice.
    Otsuki J
    Phys Rev Lett; 2015 Jul; 115(3):036404. PubMed ID: 26230811
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Emergence of superconductivity in heavy-electron materials.
    Yang YF; Pines D
    Proc Natl Acad Sci U S A; 2014 Dec; 111(51):18178-82. PubMed ID: 25489102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetism, f-electron localization and superconductivity in 122-type heavy-fermion metals.
    Steglich F; Arndt J; Stockert O; Friedemann S; Brando M; Klingner C; Krellner C; Geibel C; Wirth S; Kirchner S; Si Q
    J Phys Condens Matter; 2012 Jul; 24(29):294201. PubMed ID: 22773300
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anisotropic spin fluctuations and superconductivity in "115" heavy fermion compounds: ⁵⁹Co NMR study in PuCoGa₅.
    Baek SH; Sakai H; Bauer ED; Mitchell JN; Kennison JA; Ronning F; Thompson JD
    Phys Rev Lett; 2010 Nov; 105(21):217002. PubMed ID: 21231343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unconventional quantum criticality in the pressure-induced heavy-fermion superconductor CeRhIn₅.
    Park T; Sidorov VA; Lee H; Ronning F; Bauer ED; Sarrao JL; Thompson JD
    J Phys Condens Matter; 2011 Mar; 23(9):094218. PubMed ID: 21339571
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct evidence for a magnetic f-electron-mediated pairing mechanism of heavy-fermion superconductivity in CeCoIn5.
    Van Dyke JS; Massee F; Allan MP; Davis JC; Petrovic C; Morr DK
    Proc Natl Acad Sci U S A; 2014 Aug; 111(32):11663-7. PubMed ID: 25062692
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fully gapped superconductivity with no sign change in the prototypical heavy-fermion CeCu
    Yamashita T; Takenaka T; Tokiwa Y; Wilcox JA; Mizukami Y; Terazawa D; Kasahara Y; Kittaka S; Sakakibara T; Konczykowski M; Seiro S; Jeevan HS; Geibel C; Putzke C; Onishi T; Ikeda H; Carrington A; Shibauchi T; Matsuda Y
    Sci Adv; 2017 Jun; 3(6):e1601667. PubMed ID: 28691082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chiral superconductivity in heavy-fermion metal UTe
    Jiao L; Howard S; Ran S; Wang Z; Rodriguez JO; Sigrist M; Wang Z; Butch NP; Madhavan V
    Nature; 2020 Mar; 579(7800):523-527. PubMed ID: 32214254
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pairing and superconductivity driven by strong quasiparticle renormalization in two-dimensional organic charge transfer salts.
    Liu J; Schmalian J; Trivedi N
    Phys Rev Lett; 2005 Apr; 94(12):127003. PubMed ID: 15903952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-energy properties of the Kondo lattice model.
    Bodensiek O; Zitko R; Peters R; Pruschke T
    J Phys Condens Matter; 2011 Mar; 23(9):094212. PubMed ID: 21339565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emergent Critical Charge Fluctuations at the Kondo Breakdown of Heavy Fermions.
    Komijani Y; Coleman P
    Phys Rev Lett; 2019 May; 122(21):217001. PubMed ID: 31283303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correlation between ground state and orbital anisotropy in heavy fermion materials.
    Willers T; Strigari F; Hu Z; Sessi V; Brookes NB; Bauer ED; Sarrao JL; Thompson JD; Tanaka A; Wirth S; Tjeng LH; Severing A
    Proc Natl Acad Sci U S A; 2015 Feb; 112(8):2384-8. PubMed ID: 25675488
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anderson lattice with explicit Kondo coupling revisited: metamagnetism and the field-induced suppression of the heavy fermion state.
    Howczak O; Spałek J
    J Phys Condens Matter; 2012 May; 24(20):205602. PubMed ID: 22510783
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.