These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 25167148)

  • 41. Ultrasonic Guided Waves in Bone: A Decade of Advancement in Review.
    Tran TNHT; Le LH; Ta D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Oct; 69(10):2875-2895. PubMed ID: 35930519
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Fast characterization of two ultrasound longitudinal waves in cancellous bone using an adaptive beamforming technique.
    Taki H; Nagatani Y; Matsukawa M; Mizuno K; Sato T
    J Acoust Soc Am; 2015 Apr; 137(4):1683-92. PubMed ID: 25920821
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Simultaneous determination of acoustic velocity and density of a cortical bone slab: ultrasonic model-based approach.
    Longo R; Grimal Q; Laugier P; Vanlanduit S; Guillaume P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010; 57(2):496-500. PubMed ID: 20178916
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Numerical simulation of the dependence of quantitative ultrasonic parameters on trabecular bone microarchitecture and elastic constants.
    Haïat G; Padilla F; Barkmann R; Gluer CC; Laugier P
    Ultrasonics; 2006 Dec; 44 Suppl 1():e289-94. PubMed ID: 16859726
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cortical bone quality assessment using quantitative ultrasound on long bones.
    Foiret J; Minonzio JG; Talmant M; Laugier P
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1121-4. PubMed ID: 23366093
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Development of a practical ultrasonic approach for simultaneous measurement of the thickness and the sound speed in human skull bones: a laboratory phantom study.
    Wydra A; Malyarenko E; Shapoori K; Maev RG
    Phys Med Biol; 2013 Feb; 58(4):1083-102. PubMed ID: 23363729
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Analysis of Ultrasonic Guided Wave Propagation in Multilayered Bone Structure With Varying Soft-Tissue Thickness in View of Cortical Bone Characterization.
    Tran TNHT; Le LH; Ta D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Jan; 69(1):147-155. PubMed ID: 34520355
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Bone surface reconstruction using localized freehand ultrasound imaging.
    Lopez-Perez L; Lemaitre J; Alfiansyah A; Bellemare ME
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():2964-7. PubMed ID: 19163328
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Two-wave propagation imaging to evaluate the structure of cancellous bone.
    Yamashita K; Fujita F; Mizuno K; Mano I; Matsukawa M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Jun; 59(6):1160-6. PubMed ID: 22711411
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A motion estimation refinement framework for real-time tissue axial strain estimation with freehand ultrasound.
    Zhou Y; Zheng YP
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Sep; 57(9):1943-51. PubMed ID: 20875984
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Guided ultrasonic waves in long bones: modelling, experiment and in vivo application.
    Nicholson PH; Moilanen P; Kärkkäinen T; Timonen J; Cheng S
    Physiol Meas; 2002 Nov; 23(4):755-68. PubMed ID: 12450274
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cancellous bone analysis with modified least squares Prony's method and chirp filter: phantom experiments and simulation.
    Wear KA
    J Acoust Soc Am; 2010 Oct; 128(4):2191-203. PubMed ID: 20968389
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Comparison of three ultrasonic axial transmission methods for bone assessment.
    Muller M; Moilanen P; Bossy E; Nicholson P; Kilappa V; Timonen J; Talmant M; Cheng S; Laugier P
    Ultrasound Med Biol; 2005 May; 31(5):633-42. PubMed ID: 15866413
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Impact of attenuation on guided mode wavenumber measurement in axial transmission on bone mimicking plates.
    Minonzio JG; Foiret J; Talmant M; Laugier P
    J Acoust Soc Am; 2011 Dec; 130(6):3574-82. PubMed ID: 22225014
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Recommendations for thresholds for cortical bone geometry and density measurement by peripheral quantitative computed tomography.
    Ward KA; Adams JE; Hangartner TN
    Calcif Tissue Int; 2005 Nov; 77(5):275-80. PubMed ID: 16307388
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Numerical analysis of uncertainties in dual frequency bone ultrasound technique.
    Malo MK; Karjalainen JP; Isaksson H; Riekkinen O; Jurvelin JS; Töyräs J
    Ultrasound Med Biol; 2010 Feb; 36(2):288-94. PubMed ID: 20113863
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Dependences of ultrasonic properties on frequency and trabecular spacing in trabecular-bone-mimicking phantoms.
    Lee KI
    J Acoust Soc Am; 2015 Feb; 137(2):EL194-9. PubMed ID: 25698050
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effects of parameters on the accuracy and precision of ultrasound-based local pulse wave velocity measurement: a simulation study.
    Huang C; Ren TL; Luo J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Dec; 61(12):2001-18. PubMed ID: 25474776
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Multi-frequency axial transmission bone ultrasonometer.
    Tatarinov A; Egorov V; Sarvazyan N; Sarvazyan A
    Ultrasonics; 2014 Jul; 54(5):1162-9. PubMed ID: 24206675
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Deep Learning Analysis of Ultrasonic Guided Waves for Cortical Bone Characterization.
    Li Y; Xu K; Li Y; Xu F; Ta D; Wang W
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Apr; 68(4):935-951. PubMed ID: 32956055
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.