BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 25167156)

  • 1. Rapid prototyping fabrication of focused ultrasound transducers.
    Kim Y; Maxwell AD; Hall TL; Xu Z; Lin KW; Cain CA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Sep; 61(9):1559-74. PubMed ID: 25167156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental analysis of 1-3 piezocomposites for high-intensity focused ultrasound transducer applications.
    Chen GS; Liu HC; Lin YC; Lin YL
    IEEE Trans Biomed Eng; 2013 Jan; 60(1):128-34. PubMed ID: 23193224
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large improvement of the electrical impedance of imaging and high-intensity focused ultrasound (HIFU) phased arrays using multilayer piezoelectric ceramics coupled in lateral mode.
    Song J; Lucht B; Hynynen K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Jul; 59(7):1584-95. PubMed ID: 22828853
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design, fabrication, and characterization of a single-aperture 1.5-MHz/3-MHz dual-frequency HIFU transducer.
    Ma J; Guo S; Wu D; Geng X; Jiang X
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Jul; 60(7):1519-29. PubMed ID: 25004519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Low-Cost Miniature Histotripsy Transducer for Precision Tissue Ablation.
    Woodacre JK; Landry TG; Brown JA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Nov; 65(11):2131-2140. PubMed ID: 30222557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Power Phased-Array Transducer Module for the Construction of a System for the Treatment of Deep Vein Thrombosis.
    Dadgar MM; Hynynen K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Dec; 67(12):2710-2716. PubMed ID: 32746223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An MR-compliant phased-array HIFU transducer with augmented steering range, dedicated to abdominal thermotherapy.
    Auboiroux V; Dumont E; Petrusca L; Viallon M; Salomir R
    Phys Med Biol; 2011 Jun; 56(12):3563-82. PubMed ID: 21606558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase-Inverted Multifrequency HIFU Transducer for Lesion Expansion: A Simulation Study.
    Kwon DS; Sung JH; Park CY; Jeong JS
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Jul; 65(7):1125-1132. PubMed ID: 29993367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High intensity focused ultrasound with large aperture transducers: a MRI based focal point correction for tissue heterogeneity.
    Mougenot C; Tillander M; Koskela J; Köhler MO; Moonen C; Ries M
    Med Phys; 2012 Apr; 39(4):1936-45. PubMed ID: 22482615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Class-DE Ultrasound Transducer Driver for HIFU Therapy.
    Christoffersen C; Wong W; Pichardo S; Togtema G; Curiel L
    IEEE Trans Biomed Circuits Syst; 2016 Apr; 10(2):375-82. PubMed ID: 25955850
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quasi Class-DE Driving of HIFU Transducer Arrays.
    Christoffersen C; Ngo T; Song R; Zhou Y; Pichardo S; Curiel L
    IEEE Trans Biomed Circuits Syst; 2019 Feb; 13(1):214-224. PubMed ID: 30575547
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessing the relationship between the inter-rod coupling and the efficiency of piezocomposite high-intensity focused ultrasound transducers.
    Chen GS; Pan CC; Lin YL; Cheng JS
    Ultrasonics; 2014 Mar; 54(3):789-94. PubMed ID: 24269167
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual concentric-sectored HIFU transducer with phase-shifted ultrasound excitation for expanded necrotic region: a simulation study.
    Jeong J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 May; 60(5):924-31. PubMed ID: 23661126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A 3D time reversal cavity for the focusing of high-intensity ultrasound pulses over a large volume.
    Robin J; Arnal B; Tanter M; Pernot M
    Phys Med Biol; 2017 Feb; 62(3):810-824. PubMed ID: 28072572
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and characterization of dual-curvature 1.5-dimensional high-intensity focused ultrasound phased-array transducer.
    Chen GS; Lin CY; Jeong JS; Cannata JM; Lin WL; Chang H; Shung KK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Jan; 59(1):150-5. PubMed ID: 22293745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Feasibility of in vivo transesophageal cardiac ablation using a phased ultrasound array.
    Werner J; Park EJ; Lee H; Francischelli D; Smith NB
    Ultrasound Med Biol; 2010 May; 36(5):752-60. PubMed ID: 20347517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lens-focused transducer modeling using an extended KLM model.
    Maréchal P; Levassort F; Tran-Huu-Hue LP; Lethiecq M
    Ultrasonics; 2007 May; 46(2):155-67. PubMed ID: 17382986
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational study on the propagation of strongly focused nonlinear ultrasound in tissue with rib-like structures.
    Lin J; Liu X; Gong X; Ping Z; Wu J
    J Acoust Soc Am; 2013 Aug; 134(2):1702-14. PubMed ID: 23927211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An integrated circuit with transmit beamforming flip-chip bonded to a 2-D CMUT array for 3-D ultrasound imaging.
    Wygant IO; Jamal NS; Lee HJ; Nikoozadeh A; Oralkan O; Karaman M; Khuri-Yakub BT
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Oct; 56(10):2145-56. PubMed ID: 19942502
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetic resonance-guided shielding of prefocal acoustic obstacles in focused ultrasound therapy: application to intercostal ablation in liver.
    Salomir R; Petrusca L; Auboiroux V; Muller A; Vargas MI; Morel DR; Goget T; Breguet R; Terraz S; Hopple J; Montet X; Becker CD; Viallon M
    Invest Radiol; 2013 Jun; 48(6):366-80. PubMed ID: 23344514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.