BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

337 related articles for article (PubMed ID: 25167199)

  • 1. Classical mathematical models for description and prediction of experimental tumor growth.
    Benzekry S; Lamont C; Beheshti A; Tracz A; Ebos JM; Hlatky L; Hahnfeldt P
    PLoS Comput Biol; 2014 Aug; 10(8):e1003800. PubMed ID: 25167199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Population modeling of tumor growth curves and the reduced Gompertz model improve prediction of the age of experimental tumors.
    Vaghi C; Rodallec A; Fanciullino R; Ciccolini J; Mochel JP; Mastri M; Poignard C; Ebos JML; Benzekry S
    PLoS Comput Biol; 2020 Feb; 16(2):e1007178. PubMed ID: 32097421
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison and catalog of intrinsic tumor growth models.
    Sarapata EA; de Pillis LG
    Bull Math Biol; 2014 Aug; 76(8):2010-24. PubMed ID: 25081547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of some mathematical models for tumor growth.
    Vaidya VG; Alexandro FJ
    Int J Biomed Comput; 1982 Jan; 13(1):19-36. PubMed ID: 7061168
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mathematical modeling of tumor growth and metastatic spreading: validation in tumor-bearing mice.
    Hartung N; Mollard S; Barbolosi D; Benabdallah A; Chapuisat G; Henry G; Giacometti S; Iliadis A; Ciccolini J; Faivre C; Hubert F
    Cancer Res; 2014 Nov; 74(22):6397-407. PubMed ID: 25217520
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Classical mathematical models for prediction of response to chemotherapy and immunotherapy.
    Ghaffari Laleh N; Loeffler CML; Grajek J; Staňková K; Pearson AT; Muti HS; Trautwein C; Enderling H; Poleszczuk J; Kather JN
    PLoS Comput Biol; 2022 Feb; 18(2):e1009822. PubMed ID: 35120124
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimating Tumor Growth Rates In Vivo.
    Talkington A; Durrett R
    Bull Math Biol; 2015 Oct; 77(10):1934-54. PubMed ID: 26481497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Geometric analysis enables biological insight from complex non-identifiable models using simple surrogates.
    Browning AP; Simpson MJ
    PLoS Comput Biol; 2023 Jan; 19(1):e1010844. PubMed ID: 36662831
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A MATLAB toolbox to fit and forecast growth trajectories using phenomenological growth models: Application to epidemic outbreaks.
    Chowell G; Bleichrodt A; Dahal S; Tariq A; Roosa K; Hyman JM; Luo R
    Res Sq; 2023 Apr; ():. PubMed ID: 37034746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Statistical evaluation of mathematical models for microbial growth.
    López S; Prieto M; Dijkstra J; Dhanoa MS; France J
    Int J Food Microbiol; 2004 Nov; 96(3):289-300. PubMed ID: 15454319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A "universal" model of metastatic cancer, its parametric forms and their identification: what can be learned from site-specific volumes of metastases.
    Hanin L; Seidel K; Stoevesandt D
    J Math Biol; 2016 May; 72(6):1633-62. PubMed ID: 26307099
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reconstruction of the natural history of metastatic cancer and assessment of the effects of surgery: Gompertzian growth of the primary tumor.
    Hanin L; Bunimovich-Mendrazitsky S
    Math Biosci; 2014 Jan; 247():47-58. PubMed ID: 24211826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disease progression model of 4T1 metastatic breast cancer.
    Yang L; Yong L; Zhu X; Feng Y; Fu Y; Kong D; Lu W; Zhou TY
    J Pharmacokinet Pharmacodyn; 2020 Feb; 47(1):105-116. PubMed ID: 31970615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mathematical modeling of tumor cell proliferation kinetics and label retention in a mouse model of lung cancer.
    Zheng Y; Moore H; Piryatinska A; Solis T; Sweet-Cordero EA
    Cancer Res; 2013 Jun; 73(12):3525-33. PubMed ID: 23576555
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The recursion formula of the Gompertz function: a simple method for the estimation and comparison of tumor growth curves.
    Bassukas ID; Maurer-Schultze B
    Growth Dev Aging; 1988; 52(3):113-22. PubMed ID: 3253243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The initial engraftment of tumor cells is critical for the future growth pattern: a mathematical study based on simulations and animal experiments.
    Hoffmann B; Lange T; Labitzky V; Riecken K; Wree A; Schumacher U; Wedemann G
    BMC Cancer; 2020 Jun; 20(1):524. PubMed ID: 32503458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tumor growth in vivo and as multicellular spheroids compared by mathematical models.
    Marusić M; Bajzer Z; Vuk-Pavlović S; Freyer JP
    Bull Math Biol; 1994 Jul; 56(4):617-31. PubMed ID: 8054889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ASAS-NANP symposium: Mathematical Modeling in Animal Nutrition: The power of identifiability analysis for dynamic modeling in animal science:a practitioner approach.
    Muñoz-Tamayo R; Tedeschi LO
    J Anim Sci; 2023 Jan; 101():. PubMed ID: 37997927
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mathematical Models for Tumor Growth and the Reduction of Overtreatment.
    Heesterman BL; Bokhorst JM; de Pont LMH; Verbist BM; Bayley JP; van der Mey AGL; Corssmit EPM; Hes FJ; van Benthem PPG; Jansen JC
    J Neurol Surg B Skull Base; 2019 Feb; 80(1):72-78. PubMed ID: 30733904
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 17.