These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 25167385)

  • 1. Generic mechanism of optimal energy transfer efficiency: a scaling theory of the mean first-passage time in exciton systems.
    Wu J; Silbey RJ; Cao J
    Phys Rev Lett; 2013 May; 110(20):200402. PubMed ID: 25167385
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient energy transfer in light-harvesting systems: quantum-classical comparison, flux network, and robustness analysis.
    Wu J; Liu F; Ma J; Silbey RJ; Cao J
    J Chem Phys; 2012 Nov; 137(17):174111. PubMed ID: 23145721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of connectivity, coherence, and trapping on energy transfer in simple light-harvesting systems studied using the Haken-Strobl model with diagonal disorder.
    Gaab KM; Bardeen CJ
    J Chem Phys; 2004 Oct; 121(16):7813-20. PubMed ID: 15485243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of exciton trapping in energy transfer processes.
    Cao J; Silbey RJ
    J Phys Chem A; 2009 Dec; 113(50):13825-38. PubMed ID: 19929005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reaction rate theory: what it was, where is it today, and where is it going?
    Pollak E; Talkner P
    Chaos; 2005 Jun; 15(2):26116. PubMed ID: 16035918
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Golden rule kinetics of transfer reactions in condensed phase: the microscopic model of electron transfer reactions in disordered solid matrices.
    Basilevsky MV; Odinokov AV; Titov SV; Mitina EA
    J Chem Phys; 2013 Dec; 139(23):234102. PubMed ID: 24359347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dephasing and dissipation in a source-drain model of light-harvesting systems.
    Xiong SJ; Chen L; Zhao Y
    Chemphyschem; 2014 Sep; 15(13):2859-70. PubMed ID: 25044624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonmonotonic energy harvesting efficiency in biased exciton chains.
    Vlaming SM; Malyshev VA; Knoester J
    J Chem Phys; 2007 Oct; 127(15):154719. PubMed ID: 17949203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Excitation energy transfer in a classical analogue of photosynthetic antennae.
    Mančal T
    J Phys Chem B; 2013 Sep; 117(38):11282-91. PubMed ID: 23822554
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Excitonic energy transfer in light-harvesting complexes in purple bacteria.
    Ye J; Sun K; Zhao Y; Yu Y; Lee CK; Cao J
    J Chem Phys; 2012 Jun; 136(24):245104. PubMed ID: 22755605
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimal efficiency of quantum transport in a disordered trimer.
    Giusteri GG; Celardo GL; Borgonovi F
    Phys Rev E; 2016 Mar; 93(3):032136. PubMed ID: 27078321
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The properties of bio-energy transport and influence of structure nonuniformity and temperature of systems on energy transport along polypeptide chains.
    Pang XF
    Prog Biophys Mol Biol; 2012 Jan; 108(1-2):1-46. PubMed ID: 21951575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Beyond the Förster theory of excitation energy transfer: importance of higher-order processes in supramolecular antenna systems.
    May V
    Dalton Trans; 2009 Dec; (45):10086-105. PubMed ID: 19904437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Noise assisted excitation energy transfer in a linear model of a selectivity filter backbone strand.
    Bassereh H; Salari V; Shahbazi F
    J Phys Condens Matter; 2015 Jul; 27(27):275102. PubMed ID: 26061758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exciton diffusion length in complex quantum systems: the effects of disorder and environmental fluctuations on symmetry-enhanced supertransfer.
    Abasto DF; Mohseni M; Lloyd S; Zanardi P
    Philos Trans A Math Phys Eng Sci; 2012 Aug; 370(1972):3750-70. PubMed ID: 22753824
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Achieving effective terminal exciton delivery in quantum dot antenna-sensitized multistep DNA photonic wires.
    Spillmann CM; Ancona MG; Buckhout-White S; Algar WR; Stewart MH; Susumu K; Huston AL; Goldman ER; Medintz IL
    ACS Nano; 2013 Aug; 7(8):7101-18. PubMed ID: 23844838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of environment induced correlated fluctuations in electronic coupling on coherent excitation energy transfer dynamics in model photosynthetic systems.
    Huo P; Coker DF
    J Chem Phys; 2012 Mar; 136(11):115102. PubMed ID: 22443796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Geometrical effects on energy transfer in disordered open quantum systems.
    Mohseni M; Shabani A; Lloyd S; Omar Y; Rabitz H
    J Chem Phys; 2013 May; 138(20):204309. PubMed ID: 23742477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relations between environmental noise and electronic coupling for optimal exciton transfer in one- and two-dimensional homogeneous and inhomogeneous quantum systems.
    Forgy CC; Mazziotti DA
    J Chem Phys; 2014 Dec; 141(22):224111. PubMed ID: 25494736
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Iterative linearized density matrix propagation for modeling coherent excitation energy transfer in photosynthetic light harvesting.
    Huo P; Coker DF
    J Chem Phys; 2010 Nov; 133(18):184108. PubMed ID: 21073214
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.