These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Lateral magnetic near-field imaging of plasmonic nanoantennas with increasing complexity. Denkova D; Verellen N; Silhanek AV; Van Dorpe P; Moshchalkov VV Small; 2014 May; 10(10):1959-66. PubMed ID: 24590985 [TBL] [Abstract][Full Text] [Related]
5. Plasmonic coupling with most of the transition metals: a new family of broad band and near infrared nanoantennas. Manchon D; Lermé J; Zhang T; Mosset A; Jamois C; Bonnet C; Rye JM; Belarouci A; Broyer M; Pellarin M; Cottancin E Nanoscale; 2015 Jan; 7(3):1181-92. PubMed ID: 25488835 [TBL] [Abstract][Full Text] [Related]
6. Interference, coupling, and nonlinear control of high-order modes in single asymmetric nanoantennas. Abb M; Wang Y; Albella P; de Groot CH; Aizpurua J; Muskens OL ACS Nano; 2012 Jul; 6(7):6462-70. PubMed ID: 22708624 [TBL] [Abstract][Full Text] [Related]
7. The spectral shift between near- and far-field resonances of optical nano-antennas. Menzel C; Hebestreit E; Mühlig S; Rockstuhl C; Burger S; Lederer F; Pertsch T Opt Express; 2014 Apr; 22(8):9971-82. PubMed ID: 24787879 [TBL] [Abstract][Full Text] [Related]
8. Infrared optical properties of nanoantenna dimers with photochemically narrowed gaps in the 5 nm regime. Neubrech F; Weber D; Katzmann J; Huck C; Toma A; Di Fabrizio E; Pucci A; Härtling T ACS Nano; 2012 Aug; 6(8):7326-32. PubMed ID: 22804706 [TBL] [Abstract][Full Text] [Related]
10. Optical nanoantennas for multiband surface-enhanced infrared and Raman spectroscopy. D'Andrea C; Bochterle J; Toma A; Huck C; Neubrech F; Messina E; Fazio B; Maragò OM; Di Fabrizio E; Lamy de La Chapelle M; Gucciardi PG; Pucci A ACS Nano; 2013 Apr; 7(4):3522-31. PubMed ID: 23530556 [TBL] [Abstract][Full Text] [Related]
11. The modulation effect of transverse, antibonding, and higher-order longitudinal modes on the two-photon photoluminescence of gold plasmonic nanoantennas. Chen WL; Lin FC; Lee YY; Li FC; Chang YM; Huang JS ACS Nano; 2014 Sep; 8(9):9053-62. PubMed ID: 25207747 [TBL] [Abstract][Full Text] [Related]
12. Multiple-resonant pad-rod nanoantennas for surface-enhanced infrared absorption spectroscopy. Yue W; Kravets V; Pu M; Wang C; Zhao Z; Hu Z Nanotechnology; 2019 Nov; 30(46):465206. PubMed ID: 31483763 [TBL] [Abstract][Full Text] [Related]
13. Longitudinal and transverse coupling in infrared gold nanoantenna arrays: long range versus short range interaction regimes. Weber D; Albella P; Alonso-González P; Neubrech F; Gui H; Nagao T; Hillenbrand R; Aizpurua J; Pucci A Opt Express; 2011 Aug; 19(16):15047-61. PubMed ID: 21934866 [TBL] [Abstract][Full Text] [Related]
15. Structure enhancement factor relationships in single gold nanoantennas by surface-enhanced Raman excitation spectroscopy. Kleinman SL; Sharma B; Blaber MG; Henry AI; Valley N; Freeman RG; Natan MJ; Schatz GC; Van Duyne RP J Am Chem Soc; 2013 Jan; 135(1):301-8. PubMed ID: 23214430 [TBL] [Abstract][Full Text] [Related]
16. High-resolution imaging and spectroscopy of multipolar plasmonic resonances in aluminum nanoantennas. Martin J; Kociak M; Mahfoud Z; Proust J; Gérard D; Plain J Nano Lett; 2014 Oct; 14(10):5517-23. PubMed ID: 25207386 [TBL] [Abstract][Full Text] [Related]
17. Photonic-plasmonic-coupled nanoantennas for polarization-controlled multispectral nanofocusing. Trevino J; Walsh GF; Pecora EF; Boriskina SV; Dal Negro L Opt Lett; 2013 Nov; 38(22):4861-3. PubMed ID: 24322151 [TBL] [Abstract][Full Text] [Related]
18. Near field plasmonic gradient effects on high vacuum tip-enhanced Raman spectroscopy. Fang Y; Zhang Z; Chen L; Sun M Phys Chem Chem Phys; 2015 Jan; 17(2):783-94. PubMed ID: 25424492 [TBL] [Abstract][Full Text] [Related]
19. Enhanced spatial near-infrared modulation of graphene-loaded perfect absorbers using plasmonic nanoslits. Cai Y; Zhu J; Liu QH; Lin T; Zhou J; Ye L; Cai Z Opt Express; 2015 Dec; 23(25):32318-28. PubMed ID: 26699022 [TBL] [Abstract][Full Text] [Related]