These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 25167427)

  • 1. Elementary excitations and crossover phenomenon in liquids.
    Iwashita T; Nicholson DM; Egami T
    Phys Rev Lett; 2013 May; 110(20):205504. PubMed ID: 25167427
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pressure-induced emergence of unusually high-frequency transverse excitations in a liquid alkali metal: Evidence of two types of collective excitations contributing to the transverse dynamics at high pressures.
    Bryk T; Ruocco G; Scopigno T; Seitsonen AP
    J Chem Phys; 2015 Sep; 143(10):104502. PubMed ID: 26374045
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gaussian excitations model for glass-former dynamics and thermodynamics.
    Matyushov DV; Angell CA
    J Chem Phys; 2007 Mar; 126(9):094501. PubMed ID: 17362109
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correlation between Fragility and the Arrhenius Crossover Phenomenon in Metallic, Molecular, and Network Liquids.
    Jaiswal A; Egami T; Kelton KF; Schweizer KS; Zhang Y
    Phys Rev Lett; 2016 Nov; 117(20):205701. PubMed ID: 27886481
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing excitations and cooperatively rearranging regions in deeply supercooled liquids.
    Ortlieb L; Ingebrigtsen TS; Hallett JE; Turci F; Royall CP
    Nat Commun; 2023 May; 14(1):2621. PubMed ID: 37147284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A thermodynamic connection to the fragility of glass-forming liquids.
    Martinez LM; Angell CA
    Nature; 2001 Apr; 410(6829):663-7. PubMed ID: 11287947
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamics and dynamics of a monoatomic glass former. Constant pressure and constant volume behavior.
    Kapko V; Matyushov DV; Angell CA
    J Chem Phys; 2008 Apr; 128(14):144505. PubMed ID: 18412457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Revealing the role of molecular rigidity on the fragility evolution of glass-forming liquids.
    Yildirim C; Raty JY; Micoulaut M
    Nat Commun; 2016 Mar; 7():11086. PubMed ID: 27025348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Universality of the onset of activated transport in Lennard-Jones liquids with tunable coordination: implications for the effects of pressure and directional bonding on the crossover to activated transport, configurational entropy, and fragility of glassforming liquids.
    Rabochiy P; Lubchenko V
    J Chem Phys; 2012 Feb; 136(8):084504. PubMed ID: 22380050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computing the viscosity of supercooled liquids. II. Silica and strong-fragile crossover behavior.
    Kushima A; Lin X; Li J; Qian X; Eapen J; Mauro JC; Diep P; Yip S
    J Chem Phys; 2009 Oct; 131(16):164505. PubMed ID: 19894954
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A structural signature of liquid fragility.
    Mauro NA; Blodgett M; Johnson ML; Vogt AJ; Kelton KF
    Nat Commun; 2014 Aug; 5():4616. PubMed ID: 25098937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence of dynamic crossover phenomena in water and other glass-forming liquids: experiments, MD simulations and theory.
    Chen SH; Zhang Y; Lagi M; Chong SH; Baglioni P; Mallamace F
    J Phys Condens Matter; 2009 Dec; 21(50):504102. PubMed ID: 21836213
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phonon interpretation of the 'boson peak' in supercooled liquids.
    Grigera TS; Martín-Mayor V; Parisi G; Verrocchio P
    Nature; 2003 Mar; 422(6929):289-92. PubMed ID: 12646916
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-Gaussian excitations model for the glass transition.
    Matyushov DV; Angell CA
    J Chem Phys; 2005 Jul; 123(3):34506. PubMed ID: 16080743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fragility, Stokes-Einstein violation, and correlated local excitations in a coarse-grained model of an ionic liquid.
    Jeong D; Choi MY; Kim HJ; Jung Y
    Phys Chem Chem Phys; 2010 Feb; 12(8):2001-10. PubMed ID: 20145870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamical crossover at the liquid-liquid transformation of a compressed molten alkali metal.
    Bryk T; De Panfilis S; Gorelli FA; Gregoryanz E; Krisch M; Ruocco G; Santoro M; Scopigno T; Seitsonen AP
    Phys Rev Lett; 2013 Aug; 111(7):077801. PubMed ID: 23992083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Persistent medium-range order and anomalous liquid properties of Al(1-x)Cu(x) alloys.
    Kang J; Zhu J; Wei SH; Schwegler E; Kim YH
    Phys Rev Lett; 2012 Mar; 108(11):115901. PubMed ID: 22540487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vibrational and electronic excitations in gold nanocrystals.
    Bayle M; Combe N; Sangeetha NM; Viau G; Carles R
    Nanoscale; 2014 Aug; 6(15):9157-65. PubMed ID: 24979073
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoinduced dynamics in semiconductor quantum dots: insights from time-domain ab initio studies.
    Prezhdo OV
    Acc Chem Res; 2009 Dec; 42(12):2005-16. PubMed ID: 19888715
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Direct Link between the Fragile-to-Strong Transition and Relaxation in Supercooled Liquids.
    Sun Q; Zhou C; Yue Y; Hu L
    J Phys Chem Lett; 2014 Apr; 5(7):1170-4. PubMed ID: 26274466
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.