These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 25167884)

  • 1. Electrochemical properties of cobalt hydroxychloride microspheres as a new anode material for Li-ion batteries.
    Park GD; Ko YN; Kang YC
    Sci Rep; 2014 Aug; 4():5785. PubMed ID: 25167884
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of Li4Ti5O12 yolk-shell powders by spray pyrolysis and their electrochemical properties.
    Yang KM; Ko YN; Yun JY; Kang YC
    Chem Asian J; 2014 Feb; 9(2):443-6. PubMed ID: 24282098
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hollow Cobalt Selenide Microspheres: Synthesis and Application as Anode Materials for Na-Ion Batteries.
    Ko YN; Choi SH; Kang YC
    ACS Appl Mater Interfaces; 2016 Mar; 8(10):6449-56. PubMed ID: 26918934
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crumpled graphene-molybdenum oxide composite powders: preparation and application in lithium-ion batteries.
    Choi SH; Kang YC
    ChemSusChem; 2014 Feb; 7(2):523-8. PubMed ID: 24243867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flame spray pyrolysis for finding multicomponent nanomaterials with superior electrochemical properties in the CoO(x)-FeO(x) system for use in lithium-ion batteries.
    Kim JH; Lee JH; Kang YC
    Chem Asian J; 2014 Oct; 9(10):2826-30. PubMed ID: 25065898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemical properties of yolk-shell structured ZnFe2O4 powders prepared by a simple spray drying process as anode material for lithium-ion battery.
    Won JM; Choi SH; Hong YJ; Ko YN; Kang YC
    Sci Rep; 2014 Aug; 4():5857. PubMed ID: 25168407
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large Scale Process for Low Crystalline MoO₃-Carbon Composite Microspheres Prepared by One-Step Spray Pyrolysis for Anodes in Lithium-Ion Batteries.
    Cho JS
    Nanomaterials (Basel); 2019 Apr; 9(4):. PubMed ID: 30987189
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon/two-dimensional MoTe
    Cho JS; Ju HS; Lee JK; Kang YC
    Nanoscale; 2017 Feb; 9(5):1942-1950. PubMed ID: 28098302
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synergetic compositional and morphological effects for improved Na⁺ storage properties of Ni₃Co₆S₈-reduced graphene oxide composite powders.
    Choi SH; Kang YC
    Nanoscale; 2015 Apr; 7(14):6230-7. PubMed ID: 25779096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new strategy for synthesizing yolk-shell V₂O₅ powders with low melting temperature for high performance Li-ion batteries.
    Ko YN; Chan Kang Y; Park SB
    Nanoscale; 2013 Oct; 5(19):8899-903. PubMed ID: 23917375
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemical properties of micron-sized, spherical, meso- and macro-porous Co3O4 and CoO-carbon composite powders prepared by a two-step spray drying process.
    Kim JH; Kang YC
    Nanoscale; 2014 May; 6(9):4789-95. PubMed ID: 24664313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uniform decoration of vanadium oxide nanocrystals on reduced graphene-oxide balls by an aerosol process for lithium-ion battery cathode material.
    Choi SH; Kang YC
    Chemistry; 2014 May; 20(21):6294-9. PubMed ID: 24715540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. One-pot method for synthesizing spherical-like metal sulfide-reduced graphene oxide composite powders with superior electrochemical properties for lithium-ion batteries.
    Park GD; Choi SH; Lee JK; Kang YC
    Chemistry; 2014 Sep; 20(38):12183-9. PubMed ID: 25111441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemical properties of tin oxide flake/reduced graphene oxide/carbon composite powders as anode materials for lithium-ion batteries.
    Lee SM; Choi SH; Kang YC
    Chemistry; 2014 Nov; 20(46):15203-7. PubMed ID: 25266199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemical properties of hollow-structured MnS-carbon nanocomposite powders prepared by a one-pot spray pyrolysis process.
    Lee SM; Lee JK; Kang YC
    Chem Asian J; 2014 Feb; 9(2):590-5. PubMed ID: 24265162
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Yolk-shell, hollow, and single-crystalline ZnCo(2)O(4) powders: preparation using a simple one-pot process and application in lithium-ion batteries.
    Choi SH; Kang YC
    ChemSusChem; 2013 Nov; 6(11):2111-6. PubMed ID: 23908071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One-Pot Synthesis of CoSex -rGO Composite Powders by Spray Pyrolysis and Their Application as Anode Material for Sodium-Ion Batteries.
    Park GD; Kang YC
    Chemistry; 2016 Mar; 22(12):4140-6. PubMed ID: 26864320
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical properties of tungsten sulfide-carbon composite microspheres prepared by spray pyrolysis.
    Choi SH; Boo SJ; Lee JH; Kang YC
    Sci Rep; 2014 Aug; 4():5755. PubMed ID: 25169439
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One-pot facile synthesis of ant-cave-structured metal oxide-carbon microballs by continuous process for use as anode materials in Li-ion batteries.
    Ko YN; Park SB; Jung KY; Kang YC
    Nano Lett; 2013; 13(11):5462-6. PubMed ID: 24144195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid continuous synthesis of spherical reduced graphene ball-nickel oxide composite for lithium ion batteries.
    Choi SH; Ko YN; Lee JK; Kang YC
    Sci Rep; 2014 Aug; 4():5786. PubMed ID: 25167932
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.